参考文献/References:
[1]FISCHER G, SCHRATTENHOLZER L. Global bioenergy potentials through 2050 [J]. Biomass & Bioenergy, 2001, 20(3):151-159.
[2]KRESOVICH S, BARBAZUK B, BEDELL J A, et al. Toward sequencing the sorghum genome:a US national science foundation-sponsored workshop report [J]. Plant Physiol, 2005, 138(4):1892-1902.
[3]彭英,刘晓静,汤兴利,等. 盐胁迫对北沙参生长及生理特性的影响[J]. 江苏农业学报, 2014,30(6):1273-1278.
[4]DE LACERDA C F, CAMBRAIA J, OLIVA M A, et al. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery [J]. Environ Exp Bot , 2005, 54 :69-76.
[5]逄洪波,谷思雨,马纯艳,等. 盐胁迫对欧洲千里光幼苗生理生化特性的影响[J]. 江苏农业科学,2015,43(12):274-276.
[6]邱晓,张孝峰,林志城,等. 不同含盐量的田间自然土下甜高粱耐盐性初探[J].中国农学通报,2012,28(3):66-70.
[7]ZHAO Y Y, LU Z H, HE L. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) moench[J]. Appl Biochem Biotechnol, 2014, 173:1680-1691.
[8]贝盏临,张欣,魏玉清,等.盐碱胁迫对M-81E甜高粱种子萌发及幼苗生长的影响[J].河南农业科学,2012,41(2):45-49.
[9]CHAI Y Y, JIANG C D, SHI L, et al. Effects of exogenous spermine on sweets orghum during germination under salinity [J]. Biol Plantarum, 2010, 54(1): 145-148.
[10]王秀玲,程序,谢光辉,等. NaCl胁迫对甜高粱芽苗期生理生化特性的影响[J]. 生态环境学报,2010, 19(10):2285-2290.
[11]ZHANG C X, BIAN M D, YU H, et al. Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.) [J]. Plant Physiol Bioch, 2011, 49:1306-1312.
[12]SU M, LI X F, MA X Y, et al. Cloning two P5CS genes from bioenergy sorghum and their expression proles under abiotic stresses and MeJA treatment [J]. Plant Science, 2011, 181:652-659.
[13]SUI N, YANG Z, LIU M, et al. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves [J]. BMC Genomics, 2015, 16:534 .
[14]李洁. 干旱胁迫对青稞幼苗可溶性蛋白的影响[J]. 江苏农业科学,2015,43(12):124-126.
[15]ZEGADA L W, MONTI A. Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages [J]. Physiol Plant, 2013, 149:56-66.
[16]杨曼, 张佑麟, 徐振东, 等. 水分胁迫对黑壳楠和香樟幼苗生理特性的影响[J]. 南方农业学报, 2015,46(8):1449-1454.
[17]孟力力,张俊,闻婧. 干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J]. 江苏农业学报, 2015,31(1):180-185.
[18]荣少英,郭曙光,张彤. 干旱胁迫对甜高粱幼苗渗透调节物质的影响[J]. 河南农业科学,2011,40(4):56-59.
[19]杨倩,柴文娟,张春林. 一种微生物菌肥对甜高粱种子萌发、幼苗生长和抗逆能力的影响[J]. 内蒙古农业大学学报,2013,11(34):102-109.
[20]OGBAGA C C, STEPIEN P, JOHNSON G N. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought [J]. Physiol Plant, 2014, 152:389-401.
[21]SCHITTENHEL M S, SCHROETTER S. Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids [J]. J Agron Crop Sci, 2014, 200:46-53.
[22]何玮,张健,蒋安,等. 低温胁迫对玉草1号和甜高粱相关生理指标的影响[J]. 牧草科学,2009(12):22-24.
[23]FIEDLER K, DUENSING R, GRNDIG S,et al. Genetic dissection of temperature-dependent sorghum growth during juvenile development [J]. Theor Appl Genet, 2014, 127:1935-1948.
[24]YAN K, CHEN P, SHAO H, et al. Effects of short-term high temperature on photosynthesis and photosystem II performance in sorghum [J]. J Agron Crop Sci, 2011 ,197:400-408.
[25]YAN K, CHEN P, SHAO H, et al. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress [J]. PLoS ONE, 2013, 8(5):e62100.
[26]王学东,周菊红,华珞. 植物对重金属的抗性机理及其植物修复研究进展[J]. 南水北调与水利科技,2006, 4(2):43-46.
[27]ZHUANG P, SHU W S, LI Z, et al. Removal of metals by sorghum plants from contaminated land [J]. J Environ Sci,2009,21(10):1432-1437.
[28]贺玉姣,刘兴华,蔡庆生. C4植物甜高粱和玉米幼苗对Zn胁迫的响应差异[J]. 生态环境,2008,17(5):1839-1842.
[29]崔永行,范仲学,杜瑞雪,等. 镉胁迫对甜高粱种子萌发的影响[J]. 华北农学报,2008,23(增刊):140-143.
[30]张海燕,刘艳荣,冯伟,等. 甜高粱幼苗对Cr6+胁迫的生理响应研究[J]. 河北农业学报,2012,16(10):27-31.
[31]ZHANG H, SHI W L, YOU J F, et al. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity [J]. Plant Cell Environ, 2014, 1-11.
[32]王云,宋艳霞,孙海燕,等. 铅胁迫对甜高粱种子活力的影响[J]. 内蒙古民族大学学报,2006,21(5):521-524.
[33]SACHSM M, HO T H D. Alteration of gene expression during environmental stress in plants [J]. Annu Rev Plant Physiol, 1986, 37:363-376.
[34]NETONDO G W, BECK E, ONYANGO J C. Sorghum and salinity [J]. Crop Sci, 2004, 44(3):797-805.
[35]HEINRICH G M, FRANCIS C A, EASTIN J D. Stability of grain sorghum yield components across diverse environment [J]. Crop Sci, 1983, 23:209-212.
[36]NGARA R, NDIMBA B K. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies[J]. Proteomics, 2014, 14:611-621.
[37]ZHANG L, ZHENG Y, LI Y F, et al. Identification and temporal expression analysis of conserved and novel microRNAs in sorghum[J]. Genomics, 2011, 98(6):460-468.
[38]LIU Y, NIE DY. Allelic variation of a soluble acid invertase gene (SAI-1) and development of a functional marker in sweet sorghum [Sorghum bicolor (L.) Moench] [J]. Mol Breeding, 2014, 33:721-730.