[1]李欣欣,黄萍,庄义庆,等.能源作物甜高粱抗逆性的研究进展[J].江苏农业学报,2016,(06):1429-1433.[doi:doi:10.3969/j.issn.1000-4440.2016.06.036]
 LI Xin-xin,HUANG Ping,ZHUANG Yi-qing,et al.Research advances of stress tolerance in sweet sorghum[J].,2016,(06):1429-1433.[doi:doi:10.3969/j.issn.1000-4440.2016.06.036]
点击复制

能源作物甜高粱抗逆性的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年06期
页码:
1429-1433
栏目:
综述
出版日期:
2017-02-07

文章信息/Info

Title:
Research advances of stress tolerance in sweet sorghum
作者:
李欣欣1黄萍12庄义庆3杜浩1杜道林12
(1. 江苏大学环境与安全工程学院,江苏镇江212013;2. 江苏大学农业工程研究院,江苏镇江212013;3. 镇江农业科学研究所,江苏镇江212013)
Author(s):
LI Xin-xin1HUANG Ping12ZHUANG Yi-qing3DU Hao1DU Dao-lin12
(1. School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;2. Institute of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;3. Zhenjiang Institute of Agricultural Sciences of the Ning Zhen Hilly District, Zhenjiang 212013, China)
关键词:
甜高粱适应性抗逆能源作物
Keywords:
sweet sorghumadaptabilitystress toleranceenergy crop
分类号:
S566.5
DOI:
doi:10.3969/j.issn.1000-4440.2016.06.036
文献标志码:
A
摘要:
甜高粱具有抗旱、耐涝、耐盐碱等优良特性,对不同类型土壤都有很强的适应能力,是中国重要的粮食作物、糖料作物和能源作物之一。在石油资源面临枯竭的严峻形势下,甜高粱作为能源作物已受到全世界的广泛重视。本文就国内外对甜高粱在盐碱、干旱、温度、及重金属胁迫等多种逆境条件下,其生理生化及分子层面变化的研究做了概述,为今后大力开发利用甜高粱并为将其在江苏沿海滩涂地区引种培育提供理论依据。
Abstract:
Sweet sorghum, which belongs to one of the important food crops and sugar crops as well as energy crops, is adaptive to different types of soil under drought, water logging, salinity stresses. Sweet sorghum as an energy crop has received widespread attention around the world in the depletion of oil resources under the grim situation. In this paper, physiological/biochemical and molecular level changes in sweet sorghum in response to salinity, drought, temperature, and heavy metal stresses were summarized, which will lay a theoretical basis for vigorous development and future utilization of sweet sorghum, and fosters the introduction of sweet sorghum into Jiangsu coastal beach areas.

参考文献/References:

[1]FISCHER G, SCHRATTENHOLZER L. Global bioenergy potentials through 2050 [J]. Biomass & Bioenergy, 2001, 20(3):151-159.
[2]KRESOVICH S, BARBAZUK B, BEDELL J A, et al. Toward sequencing the sorghum genome:a US national science foundation-sponsored workshop report [J]. Plant Physiol, 2005, 138(4):1892-1902.
[3]彭英,刘晓静,汤兴利,等. 盐胁迫对北沙参生长及生理特性的影响[J]. 江苏农业学报, 2014,30(6):1273-1278.
[4]DE LACERDA C F, CAMBRAIA J, OLIVA M A, et al. Changes in growth and in solute concentrations in sorghum leaves and roots during salt stress recovery [J]. Environ Exp Bot , 2005, 54 :69-76.
[5]逄洪波,谷思雨,马纯艳,等. 盐胁迫对欧洲千里光幼苗生理生化特性的影响[J]. 江苏农业科学,2015,43(12):274-276.
[6]邱晓,张孝峰,林志城,等. 不同含盐量的田间自然土下甜高粱耐盐性初探[J].中国农学通报,2012,28(3):66-70.
[7]ZHAO Y Y, LU Z H, HE L. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) moench[J]. Appl Biochem Biotechnol, 2014, 173:1680-1691.
[8]贝盏临,张欣,魏玉清,等.盐碱胁迫对M-81E甜高粱种子萌发及幼苗生长的影响[J].河南农业科学,2012,41(2):45-49.
[9]CHAI Y Y, JIANG C D, SHI L, et al. Effects of exogenous spermine on sweets orghum during germination under salinity [J]. Biol Plantarum, 2010, 54(1): 145-148.
[10]王秀玲,程序,谢光辉,等. NaCl胁迫对甜高粱芽苗期生理生化特性的影响[J]. 生态环境学报,2010, 19(10):2285-2290.
[11]ZHANG C X, BIAN M D, YU H, et al. Identification of alkaline stress-responsive genes of CBL family in sweet sorghum (Sorghum bicolor L.) [J]. Plant Physiol Bioch, 2011, 49:1306-1312.
[12]SU M, LI X F, MA X Y, et al. Cloning two P5CS genes from bioenergy sorghum and their expression proles under abiotic stresses and MeJA treatment [J]. Plant Science, 2011, 181:652-659.
[13]SUI N, YANG Z, LIU M, et al. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves [J]. BMC Genomics, 2015, 16:534 .
[14]李洁. 干旱胁迫对青稞幼苗可溶性蛋白的影响[J]. 江苏农业科学,2015,43(12):124-126.
[15]ZEGADA L W, MONTI A. Photosynthetic response of sweet sorghum to drought and re-watering at different growth stages [J]. Physiol Plant, 2013, 149:56-66. 
[16]杨曼, 张佑麟, 徐振东, 等. 水分胁迫对黑壳楠和香樟幼苗生理特性的影响[J]. 南方农业学报, 2015,46(8):1449-1454.
[17]孟力力,张俊,闻婧. 干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J]. 江苏农业学报, 2015,31(1):180-185.
[18]荣少英,郭曙光,张彤. 干旱胁迫对甜高粱幼苗渗透调节物质的影响[J]. 河南农业科学,2011,40(4):56-59.
[19]杨倩,柴文娟,张春林. 一种微生物菌肥对甜高粱种子萌发、幼苗生长和抗逆能力的影响[J]. 内蒙古农业大学学报,2013,11(34):102-109. 
[20]OGBAGA C C, STEPIEN P, JOHNSON G N. Sorghum (Sorghum bicolor) varieties adopt strongly contrasting strategies in response to drought [J]. Physiol Plant, 2014, 152:389-401.
[21]SCHITTENHEL M S, SCHROETTER S. Comparison of drought tolerance of maize, sweet sorghum and sorghum-sudangrass hybrids [J]. J Agron Crop Sci, 2014, 200:46-53.
[22]何玮,张健,蒋安,等. 低温胁迫对玉草1号和甜高粱相关生理指标的影响[J]. 牧草科学,2009(12):22-24.
[23]FIEDLER K, DUENSING R, GRNDIG S,et al. Genetic dissection of temperature-dependent sorghum growth during juvenile development [J]. Theor Appl Genet, 2014, 127:1935-1948.
[24]YAN K, CHEN P, SHAO H, et al. Effects of short-term high temperature on photosynthesis and photosystem II performance in sorghum [J]. J Agron Crop Sci, 2011 ,197:400-408.
[25]YAN K, CHEN P, SHAO H, et al. Dissection of photosynthetic electron transport process in sweet sorghum under heat stress [J]. PLoS ONE, 2013, 8(5):e62100.
[26]王学东,周菊红,华珞. 植物对重金属的抗性机理及其植物修复研究进展[J]. 南水北调与水利科技,2006, 4(2):43-46. 
[27]ZHUANG P, SHU W S, LI Z, et al. Removal of metals by sorghum plants from contaminated land [J]. J Environ Sci,2009,21(10):1432-1437.
[28]贺玉姣,刘兴华,蔡庆生. C4植物甜高粱和玉米幼苗对Zn胁迫的响应差异[J]. 生态环境,2008,17(5):1839-1842.
[29]崔永行,范仲学,杜瑞雪,等. 镉胁迫对甜高粱种子萌发的影响[J]. 华北农学报,2008,23(增刊):140-143.
[30]张海燕,刘艳荣,冯伟,等. 甜高粱幼苗对Cr6+胁迫的生理响应研究[J]. 河北农业学报,2012,16(10):27-31.
[31]ZHANG H, SHI W L, YOU J F, et al. Transgenic Arabidopsis thaliana plants expressing a β-1,3-glucanase from sweet sorghum (Sorghum bicolor L.) show reduced callose deposition and increased tolerance to aluminium toxicity [J]. Plant Cell Environ, 2014, 1-11.
[32]王云,宋艳霞,孙海燕,等. 铅胁迫对甜高粱种子活力的影响[J]. 内蒙古民族大学学报,2006,21(5):521-524.
[33]SACHSM M, HO T H D. Alteration of gene expression during environmental stress in plants [J]. Annu Rev Plant Physiol, 1986, 37:363-376.
[34]NETONDO G W, BECK E, ONYANGO J C. Sorghum and salinity [J]. Crop Sci, 2004, 44(3):797-805.
[35]HEINRICH G M, FRANCIS C A, EASTIN J D. Stability of grain sorghum yield components across diverse environment [J]. Crop Sci, 1983, 23:209-212.
[36]NGARA R, NDIMBA B K. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies[J]. Proteomics, 2014, 14:611-621.
[37]ZHANG L, ZHENG Y, LI Y F, et al. Identification and temporal expression analysis of conserved and novel microRNAs in sorghum[J]. Genomics, 2011, 98(6):460-468.
[38]LIU Y, NIE DY. Allelic variation of a soluble acid invertase gene (SAI-1) and development of a functional marker in sweet sorghum [Sorghum bicolor (L.) Moench] [J]. Mol Breeding, 2014, 33:721-730.

相似文献/References:

[1]邵初阳,何晓兰,徐照龙,等.甜高粱种质资源多样性及主要农艺参数聚类分析[J].江苏农业学报,2015,(05):984.[doi:doi:10.3969/j.issn.1000-4440.2015.05.007]
 SHAO Chu-yang,HE Xiao-lan,XU Zhao-long,et al.Genetic diversity of sweet sorghum germplasm resources and clustering of major agronomical traits[J].,2015,(06):984.[doi:doi:10.3969/j.issn.1000-4440.2015.05.007]

备注/Memo

备注/Memo:
收稿日期:2016-01-11 基金项目:国家自然科学基金项目(31170386、31200316);江苏省科技支撑计划项目(BE2012419、BE2011369);中国博士后科学基金项目(2012M520999);江苏大学高级人才基金项目( 11JDG150) 作者简介:李欣欣(1988-),女,河南灵宝人,硕士研究生,主要从事植物生态学研究。(E-mail)xinxinlizhu@163.com 通讯作者:杜道林,(E-mail)daolindu@163.com
更新日期/Last Update: 2017-02-07