[1]孙佳兰,董成,生弘杰,等.南京设施蔬菜基地土壤中多环芳烃(PAHs)的污染特征、来源及健康风险评价[J].江苏农业学报,2025,(07):1438-1447.[doi:doi:10.3969/j.issn.1000-4440.2025.07.020]
 SUN Jialan,DONG ChengSHENG Hongjie,ZHANG Leigang,et al.Pollution characteristics, sources and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of facility vegetable bases in Nanjing[J].,2025,(07):1438-1447.[doi:doi:10.3969/j.issn.1000-4440.2025.07.020]
点击复制

南京设施蔬菜基地土壤中多环芳烃(PAHs)的污染特征、来源及健康风险评价()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1438-1447
栏目:
加工贮藏·质量安全
出版日期:
2025-07-31

文章信息/Info

Title:
Pollution characteristics, sources and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of facility vegetable bases in Nanjing
作者:
孙佳兰12董成12生弘杰2张雷刚2陈小龙2余向阳2葛静12
(江苏海洋大学海洋食品与生物工程学院,江苏连云港222005;2.江苏省农业科学院农产品质量安全与营养研究所,江苏南京210014)
Author(s):
SUN Jialan12DONG Cheng12SHENG Hongjie2ZHANG Leigang2CHEN Xiaolong2YU Xiangyang2GE Jing12
(1.School of Ocean Food and Biological Engineering, Jiangsu Ocean University, Lianyungang 222005, China;2.Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
土壤多环芳烃(PAHs)污染特征风险评价
Keywords:
soilpolycyclic aromatic hydrocarbons (PAHs)pollution characteristicsrisk assessment
分类号:
X82
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.020
文献标志码:
A
摘要:
本研究以江苏省南京市六合区4个设施蔬菜基地(D1~D4)土壤作为研究对象,共采集表层土壤样品156份,采用气相色谱-质谱(GC-MS)法测定16种多环芳烃(PAHs)单体含量。结果表明,D1、D2、D3和D4土壤中16种PAHs含量分别为82.82~145.90 μg/kg、106.08~182.63 μg/kg、70.58~119.27 μg/kg、189.88~423.29 μg/kg;均值分别为106.59 μg/kg、143.21 μg/kg、92.69 μg/kg、289.32 μg/kg;中位数分别为111.71 μg/kg、135.16 μg/kg、88.19 μg/kg、296.36 μg/kg。D1~D4土壤中PAHs的来源大致相同,机动车尾气排放和石油是其主要来源。通过终生致癌风险值进行风险评价,结果发现D1、D2、D3土壤中PAHs终生致癌风险可以忽略不计;D4土壤中PAHs终生致癌风险处于低风险水平。毒性当量含量风险评估结果显示,16种PAHs的毒性当量含量(TEQBaP16)均值为1.421~16.281 μg/kg,而7种致癌性PAHs的毒性当量含量(TEQBaP7)均值为1.243~15.883 μg/kg,表明研究区土壤中致癌风险的主要贡献者是7种致癌性PAHs,其中D4研究区BaP贡献率最大(75.893%)。本研究结果可为南京市相关部门对设施蔬菜基地土壤中PAHs预防和控制提供参考。
Abstract:
This study focused on the soil from four facility vegetable bases (D1-D4) in Luhe District, Nanjing City, collecting a total of 156 surface soil samples. The gas chromatography-mass spectrometry (GC-MS) method was employed to determine the contents of 16 polycyclic aromatic hydrocarbons (PAHs). The results showed that the contents of 16 polycyclic aromatic hydrocarbons (PAHs) in the soils of D1, D2, D3 and D4 facility vegetable bases ranged from 82.82 μg/kg to 145.90 μg/kg, 106.08 μg/kg to 182.63 μg/kg, 70.58 μg/kg to 119.27 μg/kg and 189.88 μg/kg to 423.29 μg/kg, respectively. The mean values were 106.59 μg/kg, 143.21 μg/kg, 92.69 μg/kg, and 289.30 μg/kg, respectively. The median values were 111.71 μg/kg, 135.16 μg/kg, 88.19 μg/kg, and 296.36 μg/kg, respectively. The sources of PAHs in the four facility vegetable sites were generally similar, with motor vehicle exhaust emissions and petroleum being the main sources of PAHs. Risk assessment based on lifetime carcinogenic risk values revealed that PAHs in D1, D2, and D3 soils posed negligible carcinogenic risks, while those in D4 soil were at a low-risk level. Risk assessment results based on toxic equivalent concentrations indicated that the mean values of toxic equivalent concentrations of 16 PAHs (TEQBaP16) ranged from 1.421 μg/kg to 16.281 μg/kg, while the mean values for seven carcinogenic PAHs (TEQBaP7) ranged from 1.243 μg/kg to 15.883 μg/kg. This suggested that the seven carcinogenic PAHs were the primary contributors to soil carcinogenic risk in the study area, with BaP in the D4 site showing the highest contribution rate (75.893%). The results of this study can provide a scientific reference for relevant authorities in Nanjing to prevent and control PAH contamination in soils of facility vegetable bases.

参考文献/References:

[1]CHERUIYOT N K, LEE W J, MWANGI J K, et al. An overview:polycyclic aromatic hydrocarbon emissions from the stationary and mobile sources and in the ambient air[J]. Aerosol and Air Quality Research,2015,15(7):2730-2762.
[2]KIANPOOR KALKHAJEH Y, HUANG B, HU W Y, et al. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China[J]. Agriculture,Ecosystems & Environment,2021,307:107230.
[3]HUANG Y, YANG C, LI Y Y, et al. Effects of cytotoxicity of erythromycin on PAH-degrading strains and degrading efficiency[J]. RSC Advances,2016,6(115):114396-114404.
[4]WANG Z, CHEN J W, YANG P, et al. Polycyclic aromatic hydrocarbons in Dalian soils:distribution and toxicity assessment[J]. Journal of Environmental Monitoring,2007,9(2):199-204.
[5]SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology,2013,47(12):6415-6424.
[6]DUAN Y H, SHEN G F, TAO S, et al. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi,China[J]. Chemosphere,2015,127:64-69.
[7]王鸿霖,徐伟,刘洁. 海口市主城区农田表层土壤PAHs分布特征及来源解析研究[J]. 环境科学与管理,2023,48(1):134-139.
[8]ZHANG B Z, WEI W H, ZHU H N, et al. Polycyclic aromatic hydrocarbons in soils of central Plains urban agglomeration,China:the bidirectional effects of urbanization and anthropogenic activities[J]. Environmental Research,2022,214:113930.
[9]赵冰帅,吴怡霏,李素鑫,等. 中国路域农田土壤多环芳烃污染特征和风险评价[J]. 环境科学,2025,46(2):1076-1088.
[10]孙奥,王芳,段碧辉,等. 鄂西山区农田土壤多环芳烃分布特征及风险评价[J]. 资源环境与工程,2024,38(2):204-211.
[11]DE SOUZA C V, CORRA S M. Polycyclic aromatic hydrocarbons in diesel emission,diesel fuel and lubricant oil[J]. Fuel,2016,185:925-931.
[12]OUYANG Z Z, GAO L M, YANG C. Distribution,sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan,China[J]. Ecotoxicology and Environmental Safety,2018,163:255-265.
[13]DING Y, HUANG H F, ZHANG Y, et al. Polycyclic aromatic hydrocarbons in agricultural soils from Northwest Fujian,SouthEast China:spatial distribution,source apportionment,and toxicity evaluation[J]. Journal of Geochemical Exploration,2018,195:121-129.
[14]XU P J, TAO B, YE Z Q, et al. Polycyclic aromatic hydrocarbon concentrations,compositions,sources,and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu,China[J]. Journal of Environmental Sciences,2016,48:102-111.
[15]YANG J, SUN P, ZHANG X, et al. Source apportionment of PAHs in roadside agricultural soils of a megacity using positive matrix factorization receptor model and compound-specific carbon isotope analysis[J]. Journal of Hazardous Materials,2021,403:123592.
[16]PU C, XIONG J W, ZHAO R C, et al. Levels,sources,and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soils of Karst trough zone,Central China[J]. Journal of Hydrology,2022,614:128568.
[17]谭华东,张汇杰,武春媛. GC-MS结合微量QuEChERS法快速测定土壤中16种多环芳烃[J]. 中国测试,2020,46(1):64-70.
[18]GE J, WOODWARD L A, LI Q X, et al. Composition,distribution and risk assessment of organochlorine pesticides in soils from the Midway Atoll,North Pacific Ocean[J]. Science of the Total Environment,2013,452:421-426.
[19]Risk assessment guidance for superfund, Vol.Ⅰ: human health evaluation manual, EPA/540/R/070/002 [EB/OL].(2009-01-23)
[2024-09-02]. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-f.
[20]Exposure factors handbook, EPA/600/R-090/052F [EB/OL].(2011-03-10)
[2024-09-02]. https://www.epa.gov/expobox/about-exposure-factors-handbook.
[21]CHEN Y N, ZHANG J Q, ZHANG F, et al. Contamination and health risk assessment of PAHs in farmland soils of the Yinma River Basin,China[J]. Ecotoxicology and Environmental Safety,2018,156:383-390.
[22]LIU Q Z, XU X, LIN L H, et al. Occurrence,health risk assessment and regional impact of parent,halogenated and oxygenated polycyclic aromatic hydrocarbons in tap water[J]. Journal of Hazardous Materials,2021,413:125360.
[23]COLLINS J F, BROWN J P, ALEXEEFF G V, et al. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives[J]. Regulatory Toxicology and Pharmacology,1998,28(1):45-54.
[24]严韵欣,潘剑君,赵美芳,等. 南京城郊道路两侧稻田土壤多环芳烃污染特征及风险评价[J]. 土壤通报,2024,55(5):1470-1481.
[25]MALISZEWSKA-KORDYBACH B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland:preliminary proposals for criteria to evaluate the level of soil contamination[J]. Applied Geochemistry,1996,11(1/2):121-127.
[26]张秀秀,朱昌达,王飞,等. 南京城郊不同土地利用类型农业土壤多环芳烃污染特征及风险评价[J]. 环境科学,2023,44(2):944-953.
[27]卢晓丽,康翔,魏宇宸,等. 城乡结合带农田土壤多环芳烃空间分布特征及来源解析:以南京市周岗镇为例[J]. 土壤通报,2021,52(2):286-296.
[28]李国秀,崔利辉,刘伟,等. 杨凌蔬菜基地土壤多环芳烃的污染特征及其来源[J]. 贵州农业科学,2021,49(11):109-116.
[29]金晓佩,贾晋璞,毕春娟,等. 设施栽培对土壤与蔬菜中PAHs污染特征及其健康风险评价[J]. 环境科学,2017,38(9):3907-3914.
[30]ACHTEN C, ANDERSSON J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds,2015,35(2/3/4):177-186.
[31]KEYTE I J, HARRISON R M, LAMMEL G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons:a review[J]. Chemical Society Reviews,2013,42(24):9333-9391.
[32]SHEN G F, XUE M, WEI S Y, et al. Emissions of parent,nitrated,and oxygenated polycyclic aromatic hydrocarbons from indoor corn straw burning in normal and controlled combustion conditions[J]. Journal of Environmental Sciences,2013,25(10):2072-2080.
[33]WANG C H, WU S H, ZHOU S L, et al. Characteristics and source identification of polycyclic aromatic hydrocarbons (PAHs) in urban soils:a review[J]. Pedosphere,2017,27(1):17-26.
[34]杨北辰,解启来,郑芊,等. 新疆典型地区植物和土壤多环芳烃污染特征、来源解析及健康风险评价[J]. 环境科学,2022,43(12):5751-5760.
[35]杨靖宇,俞元春,王小龙. 南京市不同功能区林业土壤多环芳烃含量与来源分析[J]. 生态环境学报,2016,25(2):314-319.
[36]黄丹,黄勇,安永龙,等. 北运河流域(北京段)表层土壤多环芳烃空间分布特征及来源解析[J]. 水文地质工程地质,2023,50(3):159-171.
[37]宋艳艳,贾鹏,房宁宁,等. 化工园区及周边农田土壤多环芳烃污染特征、来源及风险评价[J]. 四川环境,2024,43(3):49-55.
[38]南京统计局. 南京统计年鉴[EB/OL]. (2023-08-01)
[2024-09-02]. https://tjj.nanjing.gov.cn/bmfw/njtjnj/.
[39]ZAKARIA M P, TAKADA H, TSUTSUMI S, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia:a widespread input of petrogenic PAHs[J]. Environmental Science & Technology,2002,36(9):1907-1918.
[40]CHEN S J, SU H B, CHANG J E, et al. Emissions of polycyclic aromatic hydrocarbons (PAHs) from the pyrolysis of scrap tires[J]. Atmospheric Environment,2007,41(6):1209-1220.
[41]RAVINDRA K, SOKHI R, VAN GRIEKEN R. Atmospheric polycyclic aromatic hydrocarbons:source attribution,emission factors and regulation[J]. Atmospheric Environment,2008,42(13):2895-2921.
[42]AGARWAL T, KHILLARE P S, SHRIDHAR V, et al. Pattern,sources and toxic potential of PAHs in the agricultural soils of Delhi,India[J]. Journal of Hazardous Materials,2009,163(2/3):1033-1039.
[43]生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准:GB 15618-2018[S]. 北京:中国标准出版社,2018.
[44]郭佳佳,王琦,康敏捷,等. 山西野生连翘生长地土壤PAHs污染特征及风险评价[J]. 环境科学,2023,44(5):2879-2888.

相似文献/References:

[1]彭云霄,彭炜东,余江,等.大田与盆栽条件下重金属镉赋存形态差异[J].江苏农业学报,2019,(06):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
 PENG Yun-xiao,PENG Wei-dong,YU Jiang,et al.Differences of heavy metal cadmium fractions in field-pot planting[J].,2019,(07):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
[2]朱淑鑫,杨宸,顾兴健,等.K均值算法结合连续投影算法应用于土壤速效钾含量的高光谱分析[J].江苏农业学报,2020,(02):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
 ZHU Shu-xin,YANG Chen,GU Xing-jian,et al.K-means algorithm combined with successive projection algorithm for hyperspectral analysis of soil available potassium content[J].,2020,(07):358.[doi:doi:10.3969/j.issn.1000-4440.2020.02.015]
[3]杨雍康,药栋,李博,等.微生物群落在修复重金属污染土壤过程中的作用[J].江苏农业学报,2020,(05):1322.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
 YANG Yong-kang,YAO Dong,LI Bo,et al.Effect of microbial community in the process of remediation of heavy metal pollution in soil[J].,2020,(07):1322.[doi:doi:10.3969/j.issn.1000-4440.2020.05.032]
[4]彭玉娇,崔学宇,邵元元,等.不同树龄沙田柚果园土壤肥力、叶片养分和土壤细菌群落的特征[J].江苏农业学报,2021,(02):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]
 PENG Yu-jiao,CUI Xue-yu,SHAO Yuan-yuan,et al.Characteristic of soil fertility, leaf mineral nutrients and bacterial community in Shatian pomelo orchards of different tree ages[J].,2021,(07):348.[doi:doi:10.3969/j.issn.1000-4440.2021.02.010]
[5]王娟娟,胡珈玮,狄霖,等.秸秆还田与氮肥运筹对水稻不同生育期土壤细菌群落结构的影响[J].江苏农业学报,2021,(06):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
 WANG Juan-juan,HU Jia-wei,DI Lin,et al.Effects of straw returning and nitrogen management on soil microbial community structure at different rice growth stages[J].,2021,(07):1460.[doi:doi:10.3969/j.issn.1000-4440.2021.05.013]
[6]王倩倩,龚兰,朱磊,等.典型兽用抗生素在土壤-叶用莴苣中的转运及风险评估[J].江苏农业学报,2021,(06):1575.[doi:doi:10.3969/j.issn.1000-4440.2021.05.027]
 WANG Qian-qian,GONG Lan,ZHU Lei,et al.Transport and risk assessment of typical veterinary antibiotics in soil-lettuce[J].,2021,(07):1575.[doi:doi:10.3969/j.issn.1000-4440.2021.05.027]
[7]杨听雨,杨邦保,闫小龙,等.三种农药拌种后在土壤-水稻系统中的迁移和分布[J].江苏农业学报,2023,(02):405.[doi:doi:10.3969/j.issn.1000-4440.2023.02.013]
 YANG Ting-yu,YANG Bang-bao,YAN Xiao-long,et al.Migration and distribution of three pesticides in soil-rice system after seed dressing[J].,2023,(07):405.[doi:doi:10.3969/j.issn.1000-4440.2023.02.013]
[8]刘红江,裴晓芳,丁雯丽,等.江苏优质稻区土壤理化性状对稻米品质的影响[J].江苏农业学报,2023,(04):956.[doi:doi:10.3969/j.issn.1000-4440.2023.04.005]
 LIU Hong-jiang,PEI Xiao-fang,DING Wen-li,et al.Effect of soil physical and chemical properties on rice quality in high quality rice producing areas of Jiangsu province[J].,2023,(07):956.[doi:doi:10.3969/j.issn.1000-4440.2023.04.005]
[9]蓝志鹏,童鑫,黄宇,等.土壤中磺胺甲口恶唑吸附-解吸反应[J].江苏农业学报,2023,(04):996.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]
 LAN Zhi-peng,TONG Xin,HUANG Yu,et al.Adsorption-desorption of sulfamethoxazole in soils[J].,2023,(07):996.[doi:doi:10.3969/j.issn.1000-4440.2023.04.009]
[10]李祥,张永春,王磊,等.基于文献计量的近30年国内外种植甘薯土壤研究进展分析[J].江苏农业学报,2023,(06):1323.[doi:doi:10.3969/j.issn.1000-4440.2023.06.007]
 LI Xiang,ZHANG Yong-chun,WANG Lei,et al.Analysis of research on sweetpotato planting soil at home and abroad in the past 30 years based on bibliometrics[J].,2023,(07):1323.[doi:doi:10.3969/j.issn.1000-4440.2023.06.007]

备注/Memo

备注/Memo:
收稿日期:2024-09-09基金项目:江苏省农业科技自主创新基金项目[CX(22)2036];江苏省研究生科研与实践创新计划项目(KYCX2023-122)作者简介:孙佳兰(1998-),女,广西桂林人,硕士研究生,主要从事农产品产地污染修复研究。(E-mail)18276365598@163.com通讯作者:葛静,(E-mail)cherrygejing@126.com
更新日期/Last Update: 2025-08-19