[1]周淼平,张鹏,杨学明,等.扬麦158/西风重组自交系群体千粒重QTL的初步定位[J].江苏农业学报,2025,(01):1-8.[doi:doi:10.3969/j.issn.1000-4440.2025.01.001]
 ZHOU Miaoping,ZHANG Peng,YANG Xueming,et al.Preliminary QTL mapping for thousand kernel weight in Yangmai 158/Xifeng recombinant inbred line population[J].,2025,(01):1-8.[doi:doi:10.3969/j.issn.1000-4440.2025.01.001]
点击复制

扬麦158/西风重组自交系群体千粒重QTL的初步定位()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年01期
页码:
1-8
栏目:
遗传育种·生理生化
出版日期:
2025-01-31

文章信息/Info

Title:
Preliminary QTL mapping for thousand kernel weight in Yangmai 158/Xifeng recombinant inbred line population
作者:
周淼平张鹏杨学明张平平宋桂成何漪
(江苏省农业科学院粮食作物研究所,江苏南京210014)
Author(s):
ZHOU MiaopingZHANG PengYANG XuemingZHANG PingpingSONG GuichengHE Yi
(Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
小麦千粒重重组自交系数量性状基因座
Keywords:
wheatthousand kernel weightrecombinant inbred linesquantitative trait locus
分类号:
S330;S512.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.01.001
文献标志码:
A
摘要:
千粒重是影响小麦产量的重要因素,该性状遗传率高,所以研究者可以通过分子标记辅助选择有效提高小麦千粒重。为了挖掘更多与小麦千粒重密切相关的数量性状基因座(QTL)并用于标记辅助育种,本研究采用长江中下游曾经大面积推广的品种扬麦158与引进品种西风组配重组自交系群体,利用55 K芯片技术分析重组自交系群体基因型,结合3年的群体千粒重表型资料,对影响小麦千粒重的QTL进行初步分子定位。结果共检测到22个可重复的QTL,这些QTL分布于20条染色体,其中12个QTL只在2个年度被发现;10个QTL能在3个年度重复检测到,为稳定QTL。10个稳定QTL位于染色体1B、2A、4A、4B、4D、5A、5D、7A(2个QTL)和7D共9条染色体上,其中位于染色体4B、5A、5D、7A、7D上的QTL为新发现的千粒重相关QTL。在稳定QTL中,9个来自高千粒重亲本扬麦158,1个来自低千粒重亲本西风。位于染色体4B、4D、5A的稳定QTL,在3个年度的表型解释率均超过10.0%,为主效QTL,并且增加千粒重的性状均来自亲本扬麦158,这些QTL可以在今后提高小麦千粒重的标记辅助育种研究中发挥重要作用。
Abstract:
Thousand kernel weight (TKW) is an important factor affecting wheat yield. This trait has a high heritability and can be effectively improved by molecular marker-assisted selection. In order to explore more quantitative trait loci (QTLs) closely related to TKW of wheat for marker-assisted breeding, the recombinant inbred line (RIL) population was prepared by using the large-scale promotion variety Yangmai 158 in the middle and lower reaches of the Yangtze River and the introduced variety Xifeng. The genotype of the RIL population was analyzed by 55 K chip technology, and the QTLs affecting the TKW of wheat were preliminarily mapped by combining the three-year TKW phenotypic data of the population. The results showed that a total of 22 repeatable QTLs were detected, which were distributed on 20 chromosomes, of which 12 QTLs were found only in two years. Ten QTLs could be detected repeatedly in three years, which were stable QTLs. Ten stable QTLs were located on nine chromosomes, including 1B, 2A, 4A, 4B, 4D, 5A, 5D, 7A (two QTLs) and 7D. Among them, QTLs on 4B, 5A, 5D, 7A and 7D were newly discovered QTLs related to TKW. Among the stable QTLs, nine QTLs were derived from the high TKW parent Yangmai 158, and one QTL was derived from the low TKW parent Xifeng. Stable QTLs located on chromosomes 4B, 4D, and 5A, with phenotypic explanations exceeding 10.0% in all three years, were the major QTLs, and the traits increasing TKW were all derived from the parent Yangmai 158. These QTLs can play an important role in improving wheat TKW through marker assisted breeding in the future.

参考文献/References:

[1]LI T, DENG G B, SU Y, et al. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2022,135(1):257-271.
[2]MA S W, WANG M, WU J H, et al. WheatOmics:a platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant,2021,14(12):1965-1968.
[3]ECHEVERRY-SOLARTE M, KUMAR A, KIANIAN S, et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes[J]. Theoretical and Applied Genetics,2015,128(5):893-912.
[4]周淼平,杨学明,张鹏,等. 基于重组自交系群体的小麦籽粒硬度QTL分析[J]. 植物遗传资源学报,2023,24(5):1380-1388.
[5]BOEHM J D, IBBA M I, KISZONAS A M, et al. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population[J]. Journal of Cereal Science,2018,79:57-65.
[6]WANG R X, HAI L, ZHANG X Y, et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679[J]. Theoretical and Applied Genetics,2009,118(2):313-325.
[7]SUN X C, MARZA F, MA H X, et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat[J]. Theoretical and Applied Genetics,2010,120(5):1041-1051.
[8]ZHENG B S, LE GOUIS J, LEFLON M, et al. Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat[J]. Theoretical and Applied Genetics,2010,121(8):1501-1517.
[9]王瑞霞,张秀英,吴科,等. 多个环境下小麦千粒重QTL定位的稳定性分析[J]. 麦类作物学报,2012,32(1):1-6.
[10]CUI F, ZHAO C H, DING A M, et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations[J]. Theoretical and Applied Genetics,2014,127(3):659-675.
[11]姜朋,张旭,吴磊,等. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报,2021,47(5):869-881.
[12]HUANG X Q, CSTER H, GANAL M W, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2003,106(8):1379-1389.
[13]MCCARTNEY C A, SOMERS D J, HUMPHREYS D G, et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’[J]. Genome,2005,48:870-883.
[14]TSILO T J, HARELAND G A, SIMSEK S, et al. Genome mapping of kernel characteristics in hard red spring wheat breeding lines[J]. Theoretical and Applied Genetics,2010,121(4):717-730.
[15]CUI F, DING A M, LI J, et al. Wheat kernel dimensions:how do they contribute to kernel weight at an individual QTL level?[J]. Journal of Genetics,2011,90(3):409-425.
[16]陈佳慧,兰进好,王晖,等. 小麦籽粒形态及千粒重性状的QTL初步定位[J]. 麦类作物学报,2011,31(6):1001-1006.
[17]刘胜男,甘剑锋,张海萍,等. 小麦RILs群体叶绿素含量和千粒重相关分析及QTL定位[J]. 安徽农业大学学报,2013,40(4):570-574.
[18]吴旭江,臧淑江,程凯,等. 扬麦9号/CI12633RIL群体中控制小麦粒重QTL位点的初步分析[J]. 扬州大学学报(农业与生命科学版),2015,36(4):90-95.
[19]MANGINI G, BLANCO A, NIGRO D, et al. Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat[J]. Plants,2021,10(2):312.
[20]张泽源,李玥,赵文莎,等. 小麦粒重相关性状的QTL定位及分子标记的开发[J]. 中国农业科学,2023,56(21):4137-4149.
[21]CUI F, FAN X L, CHEN M, et al. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress[J]. Theoretical and Applied Genetics,2016,129(3):469-484.
[22]郭元世,梅佳,罗德祥,等.基于扬麦158/CI12633重组自交系群体的籽粒千粒重QTL分析[J]. 安徽农业科学,2022,50(11):98-100,105.
[23]HUANG X Q, CLOUTIER S, LYCAR L, et al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2006,113(4):753-766.
[24]GEGAS V C, NAZARI A, GRIFFITHS S, et al. A genetic framework for grain size and shape variation in wheat[J]. The Plant Cell,2010,22(4):1046-1056.
[25]WANG J S, LIU W H, WANG H, et al. QTL mapping of yield-related traits in the wheat germplasm 3228[J]. Euphytica,2011,177(2):277-292.
[26]师翠兰,郑菲菲,陈建省,等. 山农01-35×藁城9411重组自交系遗传图谱构建及粒重QTL分析[J]. 作物学报,2012,38(8):1369-1377.
[27]HUANG Y L, KONG Z X, WU X Y, et al. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions[J]. Theoretical and Applied Genetics,2015,128(12):2437-2445.
[28]KUMAR A, MANTOVANI E E, SEETAN R, et al. Dissection of genetic factors underlying wheat kernel shape and size in an elite ‘Nonadapted’ cross using a high density SNP linkage map[J]. The Plant Genome,2016,9(1).DOI:10.3835/plantgenome2015.09.0081.
[29]周锋,杨虓,吕栋云,等. 减源处理下小麦粒重稳定性QTL的定位分析[J]. 麦类作物学报,2022,42(4):424-432.
[30]周淼平,任丽娟,张旭,等. 小麦产量性状的QTL分析[J]. 麦类作物学报,2006,26(4):35-40.
[31]姚琴,周荣华,潘昱名,等. 小麦品种偃展1号与品系早穗30重组自交系群体遗传连锁图谱构建及重要农艺性状的QTL分析[J]. 中国农业科学,2010,43(20):4130-4139.
[32]BRESEGHELLO F, SORRELLS M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars[J]. Genetics,2006,172(2):1165-1177.
[33]SU Q N, ZHANG X L, ZHANG W, et al. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map[J]. Frontiers in Plant Science,2018,9:1484.
[34]CUTHBERT J L, SOMERS D J, BRL-BABEL A L, et al. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2008,117(4):595-608.
[35]ELHADI G M I, KAMAL N M, GORAFI Y S A, et al. Exploitation of tolerance of wheat kernel weight and shape-related traits from Aegilops tauschii under heat and combined heat-drought stresses[J]. International Journal of Molecular Sciences,2021,22(4):1830.
[36]CHENG X J, CHAI L L, CHEN Z Y, et al. Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.)[J]. BMC Genetics,2015,16:127.
[37]丁安明,李君,崔法,等. 利用小麦关联RIL群体定位产量相关性状QTL[J]. 作物学报,2011,37(9):1511-1524.
[38]李文福,刘宾,彭涛, 等. 利用DH 和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析[J]. 中国农业科学,2012,45(17):3453-3462.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(01):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(01):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(01):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(01):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(01):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(01):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(01):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-06-25基金项目:国家小麦产业体系基金项目(CARS-03-57);江苏省重点研发计划项目(BE2021375);江苏省农业科技自主创新基金项目[CX(19)1001]作者简介:周淼平(1968-),男,江苏兴化人,硕士,研究员,主要从事小麦遗传育种研究。(E-mail)mpzhou2000@163.com
更新日期/Last Update: 2025-02-28