参考文献/References:
[1]LI T, DENG G B, SU Y, et al. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2022,135(1):257-271.
[2]MA S W, WANG M, WU J H, et al. WheatOmics:a platform combining multiple omics data to accelerate functional genomics studies in wheat[J]. Molecular Plant,2021,14(12):1965-1968.
[3]ECHEVERRY-SOLARTE M, KUMAR A, KIANIAN S, et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes[J]. Theoretical and Applied Genetics,2015,128(5):893-912.
[4]周淼平,杨学明,张鹏,等. 基于重组自交系群体的小麦籽粒硬度QTL分析[J]. 植物遗传资源学报,2023,24(5):1380-1388.
[5]BOEHM J D, IBBA M I, KISZONAS A M, et al. Genetic analysis of kernel texture (grain hardness) in a hard red spring wheat (Triticum aestivum L.) bi-parental population[J]. Journal of Cereal Science,2018,79:57-65.
[6]WANG R X, HAI L, ZHANG X Y, et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679[J]. Theoretical and Applied Genetics,2009,118(2):313-325.
[7]SUN X C, MARZA F, MA H X, et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat[J]. Theoretical and Applied Genetics,2010,120(5):1041-1051.
[8]ZHENG B S, LE GOUIS J, LEFLON M, et al. Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat[J]. Theoretical and Applied Genetics,2010,121(8):1501-1517.
[9]王瑞霞,张秀英,吴科,等. 多个环境下小麦千粒重QTL定位的稳定性分析[J]. 麦类作物学报,2012,32(1):1-6.
[10]CUI F, ZHAO C H, DING A M, et al. Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations[J]. Theoretical and Applied Genetics,2014,127(3):659-675.
[11]姜朋,张旭,吴磊,等. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报,2021,47(5):869-881.
[12]HUANG X Q, CSTER H, GANAL M W, et al. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2003,106(8):1379-1389.
[13]MCCARTNEY C A, SOMERS D J, HUMPHREYS D G, et al. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’[J]. Genome,2005,48:870-883.
[14]TSILO T J, HARELAND G A, SIMSEK S, et al. Genome mapping of kernel characteristics in hard red spring wheat breeding lines[J]. Theoretical and Applied Genetics,2010,121(4):717-730.
[15]CUI F, DING A M, LI J, et al. Wheat kernel dimensions:how do they contribute to kernel weight at an individual QTL level?[J]. Journal of Genetics,2011,90(3):409-425.
[16]陈佳慧,兰进好,王晖,等. 小麦籽粒形态及千粒重性状的QTL初步定位[J]. 麦类作物学报,2011,31(6):1001-1006.
[17]刘胜男,甘剑锋,张海萍,等. 小麦RILs群体叶绿素含量和千粒重相关分析及QTL定位[J]. 安徽农业大学学报,2013,40(4):570-574.
[18]吴旭江,臧淑江,程凯,等. 扬麦9号/CI12633RIL群体中控制小麦粒重QTL位点的初步分析[J]. 扬州大学学报(农业与生命科学版),2015,36(4):90-95.
[19]MANGINI G, BLANCO A, NIGRO D, et al. Candidate genes and quantitative trait loci for grain yield and seed size in durum wheat[J]. Plants,2021,10(2):312.
[20]张泽源,李玥,赵文莎,等. 小麦粒重相关性状的QTL定位及分子标记的开发[J]. 中国农业科学,2023,56(21):4137-4149.
[21]CUI F, FAN X L, CHEN M, et al. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress[J]. Theoretical and Applied Genetics,2016,129(3):469-484.
[22]郭元世,梅佳,罗德祥,等.基于扬麦158/CI12633重组自交系群体的籽粒千粒重QTL分析[J]. 安徽农业科学,2022,50(11):98-100,105.
[23]HUANG X Q, CLOUTIER S, LYCAR L, et al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2006,113(4):753-766.
[24]GEGAS V C, NAZARI A, GRIFFITHS S, et al. A genetic framework for grain size and shape variation in wheat[J]. The Plant Cell,2010,22(4):1046-1056.
[25]WANG J S, LIU W H, WANG H, et al. QTL mapping of yield-related traits in the wheat germplasm 3228[J]. Euphytica,2011,177(2):277-292.
[26]师翠兰,郑菲菲,陈建省,等. 山农01-35×藁城9411重组自交系遗传图谱构建及粒重QTL分析[J]. 作物学报,2012,38(8):1369-1377.
[27]HUANG Y L, KONG Z X, WU X Y, et al. Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions[J]. Theoretical and Applied Genetics,2015,128(12):2437-2445.
[28]KUMAR A, MANTOVANI E E, SEETAN R, et al. Dissection of genetic factors underlying wheat kernel shape and size in an elite ‘Nonadapted’ cross using a high density SNP linkage map[J]. The Plant Genome,2016,9(1).DOI:10.3835/plantgenome2015.09.0081.
[29]周锋,杨虓,吕栋云,等. 减源处理下小麦粒重稳定性QTL的定位分析[J]. 麦类作物学报,2022,42(4):424-432.
[30]周淼平,任丽娟,张旭,等. 小麦产量性状的QTL分析[J]. 麦类作物学报,2006,26(4):35-40.
[31]姚琴,周荣华,潘昱名,等. 小麦品种偃展1号与品系早穗30重组自交系群体遗传连锁图谱构建及重要农艺性状的QTL分析[J]. 中国农业科学,2010,43(20):4130-4139.
[32]BRESEGHELLO F, SORRELLS M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars[J]. Genetics,2006,172(2):1165-1177.
[33]SU Q N, ZHANG X L, ZHANG W, et al. QTL detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map[J]. Frontiers in Plant Science,2018,9:1484.
[34]CUTHBERT J L, SOMERS D J, BRL-BABEL A L, et al. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2008,117(4):595-608.
[35]ELHADI G M I, KAMAL N M, GORAFI Y S A, et al. Exploitation of tolerance of wheat kernel weight and shape-related traits from Aegilops tauschii under heat and combined heat-drought stresses[J]. International Journal of Molecular Sciences,2021,22(4):1830.
[36]CHENG X J, CHAI L L, CHEN Z Y, et al. Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.)[J]. BMC Genetics,2015,16:127.
[37]丁安明,李君,崔法,等. 利用小麦关联RIL群体定位产量相关性状QTL[J]. 作物学报,2011,37(9):1511-1524.
[38]李文福,刘宾,彭涛, 等. 利用DH 和IF2两个群体进行小麦粒重、粒型和硬度的QTL分析[J]. 中国农业科学,2012,45(17):3453-3462.
相似文献/References:
[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(01):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(01):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002
]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010
]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(01):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012
]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(01):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(01):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(01):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(01):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]