[1]王森,田俊,刘曼.甘薯长喙壳菌的致病机制、毒素合成及防控研究进展[J].江苏农业学报,2023,(05):1256-1264.[doi:doi:10.3969/j.issn.1000-4440.2023.05.019]
 WANG Sen,TIAN Jun,LIU Man.Research progress on pathogenicity, toxin production, and control measures of Ceratocystis fimbriata[J].,2023,(05):1256-1264.[doi:doi:10.3969/j.issn.1000-4440.2023.05.019]
点击复制

甘薯长喙壳菌的致病机制、毒素合成及防控研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
1256-1264
栏目:
综述
出版日期:
2023-08-31

文章信息/Info

Title:
Research progress on pathogenicity, toxin production, and control measures of Ceratocystis fimbriata
作者:
王森田俊刘曼
(江苏师范大学生命科学学院,江苏徐州221116)
Author(s):
WANG SenTIAN JunLIU Man
(School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China)
关键词:
甘薯甘薯长喙壳菌生物学特性致病机制呋喃萜类毒素防控方法
Keywords:
sweet potatoCeratocystis fimbriatabiological characteristicspathogenicityfuranoterpenoidscontrol measures
分类号:
Q93
DOI:
doi:10.3969/j.issn.1000-4440.2023.05.019
文献标志码:
A
摘要:
甘薯长喙壳菌(Ceratocystis fimbriata Ellis & Halsted)是在世界范围内分布广泛、危害严重的食品腐败真菌,尤其会在甘薯采后贮藏过程中造成极大经济损失。此外,在甘薯长喙壳菌侵染过程中可诱导甘薯产生植物抗毒素呋喃萜类毒素,该毒素具有严重的肝毒性和肺毒性,会严重威胁人体健康。因此,控制甘薯长喙壳菌及其造成的甘薯采后贮藏损失刻不容缓。本文主要综述了甘薯长喙壳菌的生物学特性、侵染途径、发病条件、致病机制、呋喃萜类毒素的合成途径及其防控方法,以期为高效防控甘薯长喙壳菌、提升甘薯的贮藏品质提供理论依据。
Abstract:
Ceratocystis fimbriata Ellis & Halsted is a widely distributed and devastating phytopathogen causing significant losses in post-harvest sweet potatoes. In addition, sweet potato can be induced to produce furanoterpenoids during the infection of Ceratocystis fimbriata Ellis & Halsted. The toxin can cause hepatoxicity, pneumonia, and lung edema and seriously threaten human health. Therefore, it is urgent to control C. fimbriata and the storage loss of sweet potatoes. The current paper mainly reviewed the biological characteristics, infection pathways, pathogenic conditions, pathogenicity mechanism, synthesis pathway of furanoterpenoid toxins, and the control measures of C. fimbriata. The paper aimed to provide an important theoretical basis for the efficient prevention and control of C. fimbriata and the improvement of the storage quality of sweet potatoes.

参考文献/References:

[1]韦强,黄漫青,满杰. 甘薯绿色高效保鲜库及其保鲜贮藏方法: CN111567234B[P]. 2022-03-18.
[2]RAY R C. Post harvest spoilage of sweetpotato in tropics and control measures[J]. Critical Reviews in Food Science and Nutrition, 2005, 45(7/8): 623-644.
[3]GONG Y, LIU J Q, XU M J, et al. Antifungal volatile organic compounds from Streptomyces setonii WY228 control black spot disease of sweet potato[J]. Applied Environmental Microbiology, 2022, 88(6): e0231721.
[4]李倩,邓吉,杨敏,等. 引起石榴枯萎病和甘薯黑斑病的甘薯长喙壳菌菌株生物学特性的比较研究[J]. 菌物学报, 2009, 28(2): 189-196.
[5]PAUL N C, NAM S S, KACHROO A, et al. Characterization and pathogenicity of sweet potato (Ipomoea batatas) black rot caused by Ceratocystis fimbriata in Korea[J]. European Journal of Plant Pathology, 2018, 152: 833-840.
[6]OKADA Y, KOBAYASHI A, TABUCHI H, et al. Review of major sweet potato pests in Japan, with information on resistance breeding programs[J]. Breeding Science, 2017, 67(1): 73-82.
[7]SCRUGGS A C, BASAIAH T, ADAMS, et al. Genetic diversity, fungicide sensitivity, and host resistance to Ceratocystis fimbriata infecting sweetpotato in North Carolina[J]. Plant Disease, 2017, 101(6): 994-1001.
[8]贾赵东,郭小丁,尹晴红,等. 甘薯黑斑病的研究现状与展望[J]. 江苏农业科学, 2011(1): 144-147.
[9]MARIN-FELIX Y, GROENEWALD J Z, CAI L, et al. Genera of phytopathogenic fungi: GOPHY 1[J]. Studies in Mycology, 2017, 86: 99-216.
[10]STAHR M N, QUESADA-OCAMPO L M. Black rot of sweetpotato: a comprehensive diagnostic guide[J]. Plant Health Progress, 2019, 20(4): 255-260.
[11]李倩,邓吉,李健强. 甘薯长喙壳菌产生芳香性气体物质研究进展[J]. 植物保护, 2009, 35(4): 8-14.
[12]韩永花,李晓,杨俊誉,等. 中国发现甘薯长喙壳菌引起枣子果实腐烂[J]. 植物病理学报, 2015, 45(4): 356-360.
[13]郭亮虎,逯腊虎,王镇,等. 山西省甘薯主要病害及防治技术研究进展[J]. 山西农业科学, 2020, 48(8): 1351-1354.
[14]XU K, ZHANG R, LU H, et al. First report of coffee canker disease caused by Ceratocystis fimbriata in China[J]. Plant Disease, 2022, 106(6): 1756.
[15]PARADA-ROJAS C, PECOTA K, ALMEYDA C, et al. Sweetpotato root development influences susceptibility to black rot caused by the fungal pathogen Ceratocystis fimbriata[J]. Phytopathology, 2021, 111(9): 1660-1669.
[16]BEER Z D, DUONG T A, BARNES I, et al. Redefining Ceratocystis and allied genera[J]. Studies in Mycology, 2014, 79: 187-219.
[17]ZHANG Y, LI X, XING S, et al. First report of a new postharvest disease of pear fruit caused by Ceratocystis fimbriata in Kunming, China[J]. Plant Disease, 2022, 106(12): 3216.
[18]沈江卫,古树江,陈书龙. 培养条件对甘薯黑斑病菌生长与产孢量的影响[J]. 河北农业科学, 2010, 14(9): 68-71.
[19]杨绳桃. 不同培养条件对甘薯黑斑病菌产孢量的影响[J]. 华中农业大学学报, 1995, 14(4): 353-355.
[20]HARRINGTON T C, HUANG Q, FERREIRA M A, et al. Genetic analyses trace the Yunnan, China population of Ceratocystis fimbriata on pomegranate and taro to populations on Eucalyptus in Brazil[J]. Plant Disease, 2015, 99(1): 106-111.
[21]DOS SANTOS A F, FERREIRA M A, AUER C G, et al. First report of Yerba Mate Wilt caused by Ceratocystis fimbriata in Brazil[J]. Plant Disease, 2018, 102(11): 2381.
[22]OLIVEIRA L S S, PIMENTA L V A, GUIMARAES L M S, et al. Resistance of kiwifruit cultivars to Ceratocystis wilt: an approach considering the genetic diversity and variation in aggressiveness of the pathogen[J]. Plant Pathology, 2021, 70(2): 349-357.
[23]MELO M P, PIMENTA L, OLIVEIRA L S S, et al. First report of Ceratocystis fimbriata causing black rot on Arracacia xanthorrhiza in Brazil[J]. Plant Disease, 2016, 100(3): 652-653.
[24]邹琳,蒋艳红,于磊,等. 石榴、芋头、甘薯寄主的甘薯长喙壳菌形态学研究[J]. 云南大学学报(自然科学版), 2008(增刊1): 81-85.
[25]HARRINGTON T C, THORPE D J, ALFENAS A C. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata[J]. Phytopathology, 2011, 101(5): 555-566.
[26]BAKER C J, HARRINGTON T C, KRAUSS U, et al. Genetic variability and host specialization in the Latin American clade of ceratocystis fimbriata[J]. Phytopathology, 2003, 93(10): 1274-1284.
[27]STAHR M, QUESADA-OCAMPO L. Assessing the role of temperature, inoculum density, and wounding on disease progression of the fungal pathogen Ceratocystis fimbriata causing black rot in sweetpotato[J]. Plant Disease, 2020, 104(3): 930-937.
[28]LIU F F, BARNES I, ROUX J, et al. Molecular phylogenetics and microsatellite analysis reveal a new pathogenic Ceratocystis species in the Asian-Australian clade[J]. Plant Pathology, 2018, 67(5): 1097-1113.
[29]AL-ADAWI A O, BARNES I, KHAN I A, et al. Ceratocystis manginecans associated with a serious wilt disease of two native legume trees in Oman and Pakistan[J]. Australasian Plant Pathology, 2013, 42(2): 179-193.
[30]SCHOCH C L, SEIFERT K A, HUHNDORF S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6241-6246.
[31]SUN Y, LI M Q, WANG Y S, et al. Ceratocystis fimbriata employs a unique infection strategy targeting peltate glandular trichomes of sweetpotato (Ipomoea batatas) plants[J]. Phytopathology, 2020, 110(12): 1923-1933.
[32]MONTEZANO FERNANDES F, VIEIRA DE QUEIROZ M, LOPES DA SILVA L, et al. Chromosomal polymorphism of the Ceratocystis fimbriata species complex in Brazil[J], 2022, 162: 103728.
[33]WU J W, PANG L J, ZHANG X Q, et al. Early discrimination and prediction of Ceratocystis fimbriata-infected sweetpotatoes during the asymptomatic period using electronic nose[J]. Foods, 2020, 11(13): 1919.
[34]STAHR M N, QUESADA-OCAMPO L M. Effects of water temperature, inoculum concentration and age, and sanitizer presence on infection of Ceratocystis fimbriata, causal agent of black rot in sweet potato[J]. Plant Disease, 2021, 105(5): 1365-1372.
[35]PARADA-ROJAS C H, PECOTA K, ALMEYDA C, et al. Sweetpotato root development influences susceptibility to black rot caused by the fungal pathogen Ceratocystis fimbriata[J]. Phytopathology, 2021, 111(9): 1660-1669.
[36]LIBERA L P, DANIEL L, GABRIEL S, et al. Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015(66): 513-545.
[37]KABBAGE M, YARDEN O, DICKMAN M B. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233: 53-60.
[38]韦强,郑丽静,满杰,等. 甘薯预贮愈伤方法及其对贮藏保鲜效果的影响[J]. 安徽农业科学, 2020, 48(19): 189-193.
[39]赵玉花. 甘薯黑斑病的发生与防治[J]. 农业知识, 2017, 32: 15-16.
[40]WAMALWA L N, CHESETO X, OUNA E, et al. Toxic ipomeamarone accumulation in healthy parts of sweet potato (Ipomoea batatas L. Lam) storage roots upon infection by rhizopus stolonifer[J]. Journal of Agricultural Food Chemistry, 2015, 63(1): 335-342.
[41]高博. 牛霉烂甘薯中毒的病因及诊治[J]. 饲料博览, 2019(1): 75.
[42]申燕飞. 贮藏因素对采后甘薯中甘薯酮积累的影响[D]. 临安:浙江农林大学, 2018.
[43]HE Q, LUO Y G. Enzymatic browning and its control in fresh-cut produce[J]. Stewart Postharvest Review, 2007, 3(6): 1-7.
[44]张德胜,乔奇,田雨婷,等. 5种杀菌剂对储藏期甘薯黑斑病的防效及对薯块的安全性评价[J]. 植物保护, 2015, 41(6): 221-224.
[45]AMOAH R S, TERRY L A. 1-Methylcyclopropene (1-MCP) effects on natural disease resistance in stored sweet potato[J]. Journal of the Science of Food Agriculture, 2018, 98(12): 4597-4605.
[46]庞林江,路兴花,成纪予,等. 甘薯酮检测方法研究进展[J]. 食品安全质量检测学报, 2020, 11(24): 9164-9168.
[47]中国作物学会甘薯专业委员会. 中国甘薯:第7卷[M]. 北京:中国农业科学技术出版社, 1994: 77-80.
[48]CHEN Y, ZHOU Y D, LABORDA P, et al. Mode of action and efficacy of quinolinic acid for the control of Ceratocystis fimbriata on sweet potato[J]. Pest Management Science, 2021, 77(10): 4564-4571.
[49]ZHANG H Y, MAHUNU G K, CASTORIA R, et al. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds[J]. Trends in Food Science & Technology, 2018, 78: 180-187.
[50]张德胜,白瑞英,乔奇,等. 甲基硫菌灵和百菌清浸苗防治甘薯黑斑病的影响因素分析[J]. 农药学学报, 2021, 23(2): 331-340.
[51]JIANG L M, JEONG J C, LEE J S, et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato[J]. Scientific Reports, 2019, 9(1): 16354.
[52]REYES-JURADO F, NAVARRO-CRUZ A R, OCHOA-VELASCO C E, et al. Essential oils in vapor phase as alternative antimicrobials: a review[J]. Critical Reviews in Food Science Nutrition, 2019, 60(10): 1641-1650.
[53]YUAN B, XUE L W, ZHANG Q Y, et al. Essential oil from sweet potato vines, a potential new natural preservative, and an antioxidant on sweet potato tubers: assessment of the activity and the constitution[J]. Journal of Agricultural Food Chemistry, 2016, 64(40): 7481-7491.
[54]PINTO E, GONALVES M J, OLIVEIRA P, et al. Activity of Thymus caespititius essential oil and alpha-terpineol against yeasts and filamentous fungi[J]. Industrial Crops Products, 2014, 62: 107-112.
[55]LI X Z, LIU M, HUANG T G, et al. Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata[J]. Postharvest Biology Technology, 2020, 171: 111343.
[56]CHEN L, QU S, YANG K L, et al. Perillaldehyde: a promising antifungal agent to treat oropharyngeal candidiasis[J]. Biochemical Pharmacology, 2020, 180: 114201.
[57]ZHANG M, LIU M, PAN S Y, et al. Perillaldehyde controls postharvest black rot caused by Ceratocystis fimbriata in sweet potatoes[J]. Frontiers in Microbiology, 2018, 9: 1102.
[58]TIAN J, PAN C, ZHANG M, et al. Induced cell death in Ceratocystis fimbriata by pro-apoptotic activity of a natural organic compound, perillaldehyde, through Ca2+ overload and accumulation of reactive oxygen species[J]. Plant Pathology, 2019, 68(2): 344-357.
[59]WANG T, WANG X C, HAN M H, et al. Enhanced spoVF operon increases host attachment and biocontrol ability of Bacillus subtilis for the management of Ceratocystis fimbriata in sweet potato[J]. Biological Control, 2021, 161: 104651.
[60]YUAN B, JIA H, BU W, et al. A new chitosan sub-micron and encapsulated Iturin A with enhanced antifungal activity against Ceratocystis fimbriata and Rhizopus strolonifer[J]. International Journal of Biological Macromolecules, 2020, 159: 995-1003.
[61]XING K, LI T J, LIU Y F, et al. Antifungal and eliciting properties of chitosan against Ceratocystis fimbriata in sweet potato[J]. Food Chemistry, 2018, 268: 188-195.
[62]LI T J, ZHANG Y, XU M J, et al. Novel antifungal mechanism of oligochitosan by triggering apoptosis through a metacaspase-dependent mitochondrial pathway in Ceratocystis fimbriata[J]. Carbohydrate Polymers, 2020, 245: 116574.
[63]XING K, XING Y, LIU Y F, et al. Fungicidal effect of chitosan via inducing membrane disturbance against Ceratocystis fimbriata[J]. Carbohydrate Polymers, 2018, 192: 95-103.
[64]MEZZOMO R, PIVETA G, LAZAROTTO M, et al. Biological control of Ceratocystis fimbriata by Bacillus subtilis on Acacia mearnsii seedlings[J]. Floresta e Ambiente, 2019, 26(4): e20160195.
[65]杨冬静,孙厚俊,赵永强,等. 甘薯黑斑病菌的生物学特性研究及室内药剂筛选[J]. 西南农业学报, 2013, 26(6): 2336-2339.
[66]WANG C J, WANG Y Z, CHU Z H, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.)[J]. Journal of Plant Physiology, 2020, 253: 153260.
[67]LI X W, LI B B, CAI S R, et al. Identification of rhizospheric actinomycete streptomyces lavendulae SPS-33 and the inhibitory effect of its volatile organic compounds against Ceratocystis fimbriata in postharvest sweet potato (Ipomoea batatas (L.) Lam.)[J]. Microorganisms, 2020, 8(3): 319.
[68]ZHANG Y, LI T J, LIU Y F, et al. Volatile organic compounds produced by pseudomonas chlororaphis subsp. aureofaciens SPS-41 as biological fumigants to control Ceratocystis fimbriata in postharvest sweet potatoes[J]. Journal of Agricultural Food Chemistry, 2019, 67(13): 3702-3710.
[69]XU M J, GUO J H, LI T J, et al. Antibiotic effects of volatiles produced by XK29 against the black spot disease caused by in postharvest sweet potato[J]. Journal of Agricultural Food Chemistry, 2021, 69(44): 13045-13054.
[70]LIU M Y, GONG Y, SUN H J, et al. Characterization of a novel chitinase from sweet potato and its fungicidal effect against Ceratocystis fimbriata[J]. Journal of Agricultural Food Chemistry, 2020, 68(29): 7591-7600.
[71]孙书军,周志林,张安,等. 影响甘薯种薯安全贮藏的主要因素及防控技术[J]. 农业开发与装备, 2020(6): 192-193.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(05):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(05):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(05):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(05):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(05):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(05):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(05):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
 LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(05):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]

备注/Memo

备注/Memo:
收稿日期:2022-09-11 基金项目:江苏省研究生科研与实践创新计划项目(KYCX21-2591);徐州市科技局科技计划项目(KC21126) 作者简介:王森 (1997-),男,江苏徐州人,硕士研究生,主要从事食品腐败真菌及毒素控制技术方面的研究。(E-mail)2663754914@qq.com 通讯作者:刘曼,(E-mail)liuman861214@163.com
更新日期/Last Update: 2023-09-13