[1]郭容利,李彬,范宝超,等.猪传染性胃肠炎病毒分离株JS2012 全基因组序列分析[J].江苏农业学报,2016,(06):1351-1358.[doi:doi:10.3969/j.issn.1000-4440.2016.06.024]
 GUO Rong-li,LI Bin,FAN Bao-chao,et al.The complete genome analysis of porcine transmissible gastroenteritis virus strain JS2012[J].,2016,(06):1351-1358.[doi:doi:10.3969/j.issn.1000-4440.2016.06.024]
点击复制

猪传染性胃肠炎病毒分离株JS2012 全基因组序列分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年06期
页码:
1351-1358
栏目:
畜牧兽医·水产养殖
出版日期:
2017-02-07

文章信息/Info

Title:
The complete genome analysis of porcine transmissible gastroenteritis virus strain JS2012
作者:
郭容利李彬范宝超温立斌茅爱华周萍何孔旺
(江苏省农业科学院兽医研究所/农业部兽用生物制品工程技术重点实验室/国家兽用生物制品工程技术研究中心,江苏南京210014)
Author(s):
GUO Rong-liLI BinFAN Bao-chaoWEN Li-binMAO Ai-huaZHOU PingHE Kong-wang
(Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China)
关键词:
猪传染性胃肠炎病毒(TGEV)全基因组序列分析
Keywords:
genome of transmissible gastroenteritis virus (TGEV)the complete genomesequence analysis
分类号:
S858.285.3;S852.659.6
DOI:
doi:10.3969/j.issn.1000-4440.2016.06.024
文献标志码:
A
摘要:
设计32对PCR引物分片段扩增猪传染性胃肠炎病毒(TGEV)江苏分离株JS2012全基因组,扩增产物克隆到pMD19-T载体并测序。用DNAstar软件将JS2012全基因组序列与GenBank中其他13株TGEV株和猪呼吸道冠状病毒(PRCV-ISU-1)序列进行比对以及同源性分析,并绘制基因进化树。JS2012基因组序列全长28 542 bp,不包括polyA。基因组的排列为TGEV典型的基因排列序:5′-ORF1a-ORF1b-S-3a-3b-E-M-N-7-3′。TGEV JS2012株的ORF3基因和Miller组病毒一样有2个大片段的缺失。JS2012的S基因和Miller M6以及Virulent Purdue 2个强毒株有同样的序列特征。除Virulent Purdue外,其余Purdue株在1 123~1 128 bp处均有6 bp的缺失,JS2012与所有Miller株及Virulent Purdue一样,此处没有缺失。JS2012与其他TGEV毒株之间的碱基序列同源性为98.6%~99.9%,与Miller M6的碱基序列同源性最高,亲缘关系最近,同属于Miller组,与Purdue组相对较远。
Abstract:
Thirty-two pairs of primers were designed to amplify the genome of porcine transmissible gastroenteritis virus (TGEV) strain JS2012 in segments by PCR, and PCR products were cloned into pMD19-T vector and subsequently sequenced. The complete genome of strain JS2012 was compared with other 13 strains of TGEV published in GenBank database and porcine respiratory coronavirus (PRCV-ISU-1) by DNAstar software. The sequencing results showed that the complete genome of the JS2012 strain was 28 542 bp in length, excluding the poly(A) tail. The genome organization was similar to those of other reported TGEVs, with the typical gene order 5′-ORF1a-ORF1b-S-3a-3b-E-M-N-7-3′. There were two deletions in the ORF3a/b gene of both TGEV strain JS2012 and Miller strains. No mutation was detected in the S gene of strain JS2012 and virulent strains Miller M6 and Virulent Purdue. There were 6-bp deletions at 1 123-1 128 bp in all Purdue strains except for Virulent Purdue which showed no deletion as well as all Miller strains and JS2012. JS2012 shared 98.6%-99.9% homology of nucleotide sequences with other TGEV strains, and the highest homology was with Miller M6, indicative of the closest relationship. JS2012 was phylogenetically far from strains Purdue.

参考文献/References:

[1]SIRINARUMITR T, SIDDLE S, GRAHARE F, et al. Porcine transmissible gastroenteritis virus induced apoptosis in swine testes cell culture[J]. Archives of Virology, 1998, 143(12): 2471-2485.
[2]SASAHARA J, HARADA K, HAYASHI S, et al. Studies on transmissible gastroenteritis in pigs in Japan[J]. J Vet Sci, 1958, 20: 1-6. 
[3]PRITCHARD G C.Transmissible gastroenteritis in endemically infected breeding herds of pigs in East Anglia, 1981-1985[J]. The Veterinary Record, 1987, 120(10): 226-230.
[4]MASTERS P S. The molecular biology of coronaviruses[J].Adv Virus Res, 2006, 66: 193-292.
[5]DELMAS B, DENIS R, GODET M, et a1. Four major antigenic site of the corona virus transmissible gastroenteritis virus are located on the amino terminal half of spike glycoprotein S[J]. J Gen Virol, 1990, 71(6): 1313-1323.
[6]JIMENEZ G, CORREA I, MELGOSA M P. Critical epitopes in transmissible gastroenteritis virus neutralization[J]. Journal of Virol, 1986, 60(1): 131-139.
[7]CARLOS M, SANCHEZ, IZETA A, et al. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence[J]. Journal of Virol, 1999, 73(9): 7607-7618.
[8]BALLESTEROS L, SANCHEZ C, ENJUANES L. Two amino acid changes at the N-terminus of TGEV spike protein result in the loss of enteric tropism[J]. Journal of Virol, 1997, 227(2): 378-388.
[9]CHRISTINE K, GRAHAM D, YOLKEN R, et al. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of TGEV[J].Journal of Virol, 1997, 71(4): 3285-3287.
[10]COLLINS A R, KNOBLER R L, POWELL H. Monoclonal antibodies to murine hepatitis virus-4(strain JHM) define the viral glycoprotein responsible for 46 attachment and cell-cell fusion[J]. Virology, 1982, 119(2): 358-371.
[11] XIAO H, XU L H, YAMADA Y, LIU D X .Coronavirus spike protein inhibits host cell translation by interaction with eIF3f[J]. PLoS One, 2008, 3(1): e1494.
[12] KIM L, HAYES J, LEWIS P, et al. Molecular characterization and pathogenesis of transmissible gastroenteritis coronavirus (TGEV) and porcine respiratory coronavirus (PRCV) field isolates co-circulating in a swine herd[J].Arch Virol, 2000, 145(6): 1133-1147.
[13] GODET M, L HARIDON R, VANTHEROT J F, et al. TGEV coronavirus ORF4 encodes amembrane protein that is incorporated into virions[J]. J Vird, 1992, 188(2): 666-675.
[14] KLUMPERMAN J, LOCKER J K, MEIJER A, et al. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding[J]. Journal of Virology, 1994, 68 (10): 6523-6534.
[15] STOHLMAN L M, BARIC R,NELSON G N, et al. Specific interaction between coronavirus leader RNA and nucleocapsid protein[J]. Journal of Virol, 1988, 62(11): 4288-4295.
[16] SOLA I, ALONSO S, ZUNIGA S, et al. Engineering the transmissible gastroenteritis virus genome as an expression vector inducing lactogenic immunity[J]. J Virol, 2003, 77(7): 4357-4369.
[17] ORTEGO J, SOLA I, ALMAZáN F, et al. Trnasmissible gasortenieritis coronavirus gene7 is not essential but infliuences in vivo vuris replication and viurlence[J]. Virology, 2003, 308(1): 13-22.
[18] 郭容利,倪艳秀,温立斌,等.猪传染性胃肠炎病毒江苏株的分离与鉴定及其S基因序列分析[J].华北农学报, 2013, 28(5): 74-79.
[19] HU W W, YU Q H, ZHU L Q, et al. Complete genomic sequence of the coronavirus transmissible gastroenteritis virus SHXB isolated in China[J]. Arch Virol, 2014, 159(9): 2295-2302.
[20] ELEOUET J F, RASSCHAERT D, LAMBERT P, et al. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus[J]. Virology, 1995, 206(2): 817-822.
[21] SANCHEZ C M, GEBAUER F, SUNE C, et al. Genetic evolution and tropism of transmissible gastroenteritis coronaviruses[J]. Virology, 1992, 190(1): 92-105. 
[22] ZHANG X, HASOKSUZ M, SPIRO D, et al. Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus[J]. Virology, 2007, 358(2): 424-435. 
[23] LUO Y, ZHANG J, DENG X, et al. Complete genome sequence of a highly prevalent isolate of porcine epidemic diarrhea virus in South China[J]. Journal of Virology, 2012, 86(17): 9551. 
[24] OKA T, SAIF L J, MARTHALER D, et al. Cell culture isolation and sequence analysis of genetically diverse US porcine epidemic diarrhea virus strains including a novel strain with a large deletion in the spike gene[J]. Veterinary Microbiology, 2014, 173(3): 258-269. 
[25] LU G, WANG Q, GAO G F. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond[J]. Trends in Microbiology, 2015, 23(8): 468-478.

相似文献/References:

[1]吴旭锦,朱小甫.猪瘟病毒 SXYL2006 株全基因组序列特征分析[J].江苏农业学报,2016,(01):133.[doi:10.3969/j.issn.1000-4440.2016.01.021 ]
 WU Xu-jin,ZHU Xiao-fu.Complete genome sequence analysis of classical swine fever virus strain SXYL2006[J].,2016,(06):133.[doi:10.3969/j.issn.1000-4440.2016.01.021 ]
[2]赵靓,白彩霞,王小朋,等.猪细小病毒6型全基因组克隆及遗传进化分析[J].江苏农业学报,2019,(05):1154.[doi:doi:10.3969/j.issn.1000-4440.2019.05.022]
 ZHAO Liang,BAI Cai-xia,WANG Xiao-peng,et al.Cloning and genetic evolution analysis of whole genome of porcine parvovirus type 6[J].,2019,(06):1154.[doi:doi:10.3969/j.issn.1000-4440.2019.05.022]
[3]覃悦,祝友朋,韩长志.基于全基因组序列的黄单胞菌分泌蛋白质预测及其特征分析[J].江苏农业学报,2021,(01):53.[doi:doi:10.3969/j.issn.1000-4440.2021.01.007]
 QIN Yue,ZHU You-peng,HAN Chang-zhi.Prediction and characteristic analysis of Xanthomonas campestris secretory protein based on whole genome sequence[J].,2021,(06):53.[doi:doi:10.3969/j.issn.1000-4440.2021.01.007]
[4]时丕彪,王德领,蒋润枝,等.藜麦ZF-HD转录因子的全基因组鉴定及其对盐胁迫的响应分析[J].江苏农业学报,2022,38(02):304.[doi:doi:10.3969/j.issn.1000-4440.2022.02.003]
 SHI Pi-biao,WANG De-ling,JIANG Run-zhi,et al.Genome-wide identification of ZF-HD transcription factors and expression analysis of response to salt stress in quinoa[J].,2022,38(06):304.[doi:doi:10.3969/j.issn.1000-4440.2022.02.003]
[5]高晓晓,涂丽琴,孙枫,等.江苏蚕豆三叶草黄脉病毒的分子鉴定及全基因组结构特征分析[J].江苏农业学报,2022,38(05):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]
 GAO Xiao-xiao,TU Li-qin,SUN Feng,et al.Molecular identification and genomic characterization of clover yellow vein virus isolated from broad bean in Jiangsu province[J].,2022,38(06):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]
[6]刘高强,李新鹏,刘文钊,等.一株高效降解血液蛋白的枯草芽孢杆菌NWMCC0137全基因组测序及分析[J].江苏农业学报,2023,(07):1460.[doi:doi:10.3969/j.issn.1000-4440.2023.07.003]
 LIU Gao-qiang,LI Xin-peng,LIU Wen-zhao,et al.Whole genome sequencing and analysis of Bacillus subtilis NWMCC0137, an efficient blood protein degrading strain[J].,2023,(06):1460.[doi:doi:10.3969/j.issn.1000-4440.2023.07.003]

备注/Memo

备注/Memo:
收稿日期:2016-01-29 基金项目:江苏省农业科技自主创新基金项目(CX(15)1056) 作者简介:郭容利(1974-),女,湖北天门人,硕士,副研究员,主要从事动物疫病防控研究。(Te1)025-84390331;(E-mail)guorl1974@163.com 通讯作者:何孔旺,(Tel)025-84390748;(E-mail)kwh2003@263.com
更新日期/Last Update: 2017-02-07