[1]王丹丹,李成阳,李强.甘薯高效原生质体瞬时转化系统的建立及应用[J].江苏农业学报,2024,(12):2201-2206.[doi:doi:10.3969/j.issn.1000-4440.2024.12.002]
 WANG Dandan,LI Chengyang,LI Qiang.Establishment and application of an efficient protoplast transient transformation system in sweet potato[J].,2024,(12):2201-2206.[doi:doi:10.3969/j.issn.1000-4440.2024.12.002]
点击复制

甘薯高效原生质体瞬时转化系统的建立及应用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年12期
页码:
2201-2206
栏目:
遗传育种·生理生化
出版日期:
2024-12-30

文章信息/Info

Title:
Establishment and application of an efficient protoplast transient transformation system in sweet potato
作者:
王丹丹李成阳李强
(江苏徐淮地区徐州农业科学研究所/农业农村部甘薯生物学与遗传育种重点实验室/中国农业科学院甘薯研究所,江苏徐州221131)
Author(s):
WANG DandanLI ChengyangLI Qiang
(Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District/Key Laboratory of Biology and Genetic Breeding of Sweetpotato, Ministry of Agriculture and Rural Affairs/Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou 221131, China)
关键词:
甘薯原生质体瞬时转化亚细胞定位
Keywords:
sweetpotatoprotoplasttransient transformationsubcellular localization
分类号:
S531
DOI:
doi:10.3969/j.issn.1000-4440.2024.12.002
文献标志码:
A
摘要:
原生质体瞬时转化系统简便高效,已被广泛用于植物基因功能分析。然而,目前甘薯中尚未建立原生质体瞬时转化系统。本研究以徐紫薯8号水培根系为试验材料,通过聚乙二醇(PEG)介导,建立了一个操作简便且高效的原生质体分离和瞬时转化系统。结果表明,水培根系制备的原生质体产量高达每1 g 1.106×107个,质粒转化效率高达69.46%。并利用该系统,首次成功将甘薯蔗糖转运蛋白(IbSUT4)定位到甘薯细胞膜上。本研究结果为甘薯功能基因研究和分子育种提供了重要技术支撑。
Abstract:
The protoplast transient transformation system is simple and efficient, and has been widely used in plant gene function analysis. However, the protoplast transformation system has not yet been established in sweet potato. In this study, the hydroponic roots of Xuzishu 8 were used as materials to establish a simple and efficient protoplast isolation and transient transformation system mediated by polyethylene glycol (PEG). The results showed that the yield of protoplasts prepared from hydroponic roots was as high as 1.106×107 per gram, and the plasmid transformation efficiency was as high as 69.46%. Using this system, the sweet potato sucrose transporter (IbSUT4) was successfully localized on sweet potato cell membrane for the first time. The results of this study provide important technical support for sweet potato functional gene research and molecular breeding.

参考文献/References:

[1]SAPAKHOVA Z, RAISSOVA N, DAUROV D, et al. Sweet potato as a key crop for food security under the conditions of global climate change:a review[J]. Plants,2023,12(13):2516.
[2]LIU Q C. Improvement for agronomically important traits by gene engineering in sweetpotato[J]. Breeding Science,2017,67(1):15-26.
[3]YOON U H, CAO Q H, SHIRASAWA K, et al. Haploid-resolved and chromosome-scale genome assembly in hexa-autoploid sweetpotato (Ipomoea batatas (L.) Lam)[J]. BioRxiv,2022. DOI:https://doi.org/10.1101/2022.12.25.521700.
[4]YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants,2017,3(9):696-703.
[5]ISOBE S, SHIRASAWA K, HIRAKAWA H. Challenges to genome sequence dissection in sweetpotato[J]. Breeding Science,2017,67(1):35-40.
[6]DAVEY M R, ANTHONY P, POWER J B, et al. Plant protoplasts:status and biotechnological perspectives[J]. Biotechnology Advances,2005,23(2):131-171.
[7]YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nature Protocols,2007,2(7):1565-1572.
[8]BAO W Y, ZHANG W J, HUANG Y C, et al. Protein kinase ATR inhibits E3 ubiquitin ligase CRL4PRL1 to stabilize ribonucleotide reductase in response to replication stress[J]. Cell Reports,2023,42(7):112685.
[9]XIANG Y H, YU J J, LIAO B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice[J]. Molecular Plant,2022,15(12):1908-1930.
[10]WANG D D, LIU H J, WANG H X, et al. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in sweetpotato[J]. BMC Plant Biology,2020,20:1-15.
[11]ZHANG H, WANG Z, LI X, et al. The IbBBX24–IbTOE3–IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist,2022,233(3):1133-1152.
[12]ZHANG B, FAN W M, ZHU Z Z, et al. Functional analysis of MdSUT2. 1,a plasma membrane sucrose transporter from apple[J]. Journal of Integrative Agriculture,2023,22(3):762-775.
[13]ZHANG K, LIU S H, FU Y Z, et al. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis[J]. Plant Methods,2023,19(1):1-12.
[14]ROTTMANN T M, FRITZ C, LAUTER A, et al. Protoplast-esculin assay as a new method to assay plant sucrose transporters:characterization of AtSUC6 and AtSUC7 sucrose uptake activity in Arabidopsis Col-0 ecotype[J]. Frontiers in Plant Science,2018,9:430.
[15]吴耀武,马彩萍. 甘薯 (Ipomoea batatas) 原生质体的分离、培养与愈伤组织的形成[J]. 植物学报,1979(21):334-338.
[16]BIDNEY D L, SHEPARD J F. Colony development from sweet potato petiole protoplasts and mesophyll cells[J]. Plant Science Letters,1980,18(4):335-342.
[17]OTANI M, SHIMADA T, NIIZEKI H. Mesophyll protoplast culture of sweet potato (Ipomoea batatas L.)[J]. Plant Science,1987,53(2):157-160.
[18]程增书. 甘薯叶柄原生质体的分离,培养及愈伤组织的形成[J]. 河北农作物研究,1992(4):6.
[19]SIHACHAKR D, DUCREUX G. Regeneration of Plants from Protoplast of Sweet Potato (Ipomoea batatas L. Lam.)[C]//CAI Q G, TSAI C K, QIAN Y Q, et al. Plant Protoplasts and Genetic Engineering IV. Berlin,Heidelberg:Springer Berlin Heidelberg,1993.
[20]BELARMINO M M, ABE T, SASAHARA T. Plant regeneration from stem and petiole protoplasts of sweet potato (Ipomoea batatas) and its wild relative,I. lacunose [J]. Plant Cell Tissue & Organ Culture,1994,37:145-150.
[21]李洪杰,梁增霞. 甘薯叶肉和细胞悬浮原生质体植株再生[J]. 国外农学-杂粮作物,1995(44):35-40.
[22]DHIR S K, OGLESBY J, BHAGSARI A S. Plant regeneration via somatic embryogenesis,and transient gene expression in sweet potato protoplasts[J]. Plant Cell Reports,1998,17(9):665-669.
[23]GUO J M, LIU Q C, ZHAI H, et al. Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato,I. batatas (L.) Lam.[J]. Plant Cell Tissue & Organ Culture,2006,87(3):321-327.
[24]LIU T G, XIE Q T, ZHANG M, et al. Reclaiming agriceuticals from sweetpotato (Ipomoea batatas (L.) Lam.) by-products[J]. Foods,2024,13(8):1180.
[25]LIU Q C, ZHAI H, WANG Y, et al. Efficient plant regeneration from embryogenic suspension cultures of sweetpotato[J]. In Vitro Cellular & Developmental Biology Plant,2001,37(5):564-567.
[26]NISHIMAKI T, NOZUE M. Isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato[J]. Plant cell reports,1985,4(5):248-251.
[27]YU G H, CHENG Q, XIE Z N, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation,and its application on interaction study between LpNOL and LpNYC1[J]. Plant Methods,2017,13:1-8.
[28]WANG Q L, YU G R, CHEN Z Y, et al. Optimization of protoplast isolation,transformation and its application in sugarcane (Saccharum spontaneum L.)[J]. The Crop Journal,2021,9(1):133-142.
[29]GROSSER J W, GMITTER F G. Protoplast fusion for production of tetraploids and triploids:applications for scion and rootstock breeding in citrus[J]. Plant Cell,Tissue and Organ Culture,2011,104 (3):343-357.
[30]HE F, CHEN S B, NING Y S, et al. Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis[J]. Current Protocols in Plant Biology,2016,1(2):373-383.
[31]LIN C S, HSU C T, YANG L H, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis:from single-cell mutation detection to mutant plant regeneration[J]. Plant Biotechnology Journal,2018,16(7):1295-1310.
[32]MENG X Q, LIU S Y, ZHANG C B, et al. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses [J]. Plant Physiology,2023,191(1):747-771.

相似文献/References:

[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
 TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(12):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
 DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(12):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
 AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(12):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
 ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(12):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
 ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(12):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]杜艳,刘永锋,常有宏,等.梨炭疽病菌原生质体遗传转化体系的建立及GFP标记菌株的获得[J].江苏农业学报,2017,(02):295.[doi:doi:10.3969/j.issn.1000-4440.2017.02.009]
 DU Yan,LIU Yong-feng,CHANG You-hong,et al.Establishment of genetic transformation system of Colletotrichum gloeosporioides protoplast and generation of GFP-tagged transformants[J].,2017,(12):295.[doi:doi:10.3969/j.issn.1000-4440.2017.02.009]
[7]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
 QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(12):84.[doi:10.3969/j.issn.1000-4440.2016.01.013 ]
[8]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
 MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(12):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[9]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
 LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(12):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[10]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
 YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(12):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]

备注/Memo

备注/Memo:
收稿日期:2024-02-25基金项目:国家甘薯产业技术体系项目(CARS-10-甘薯)作者简介:王丹丹(1994-),女,山东烟台人,博士研究生,主要研究方向为甘薯遗传育种。(E-mail)wdd201712@126.com通讯作者:李强,(E-mail)instrong@163.com
更新日期/Last Update: 2025-01-23