参考文献/References:
[1]SAPAKHOVA Z, RAISSOVA N, DAUROV D, et al. Sweet potato as a key crop for food security under the conditions of global climate change:a review[J]. Plants,2023,12(13):2516.
[2]LIU Q C. Improvement for agronomically important traits by gene engineering in sweetpotato[J]. Breeding Science,2017,67(1):15-26.
[3]YOON U H, CAO Q H, SHIRASAWA K, et al. Haploid-resolved and chromosome-scale genome assembly in hexa-autoploid sweetpotato (Ipomoea batatas (L.) Lam)[J]. BioRxiv,2022. DOI:https://doi.org/10.1101/2022.12.25.521700.
[4]YANG J, MOEINZADEH M H, KUHL H, et al. Haplotype-resolved sweet potato genome traces back its hexaploidization history[J]. Nature Plants,2017,3(9):696-703.
[5]ISOBE S, SHIRASAWA K, HIRAKAWA H. Challenges to genome sequence dissection in sweetpotato[J]. Breeding Science,2017,67(1):35-40.
[6]DAVEY M R, ANTHONY P, POWER J B, et al. Plant protoplasts:status and biotechnological perspectives[J]. Biotechnology Advances,2005,23(2):131-171.
[7]YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nature Protocols,2007,2(7):1565-1572.
[8]BAO W Y, ZHANG W J, HUANG Y C, et al. Protein kinase ATR inhibits E3 ubiquitin ligase CRL4PRL1 to stabilize ribonucleotide reductase in response to replication stress[J]. Cell Reports,2023,42(7):112685.
[9]XIANG Y H, YU J J, LIAO B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice[J]. Molecular Plant,2022,15(12):1908-1930.
[10]WANG D D, LIU H J, WANG H X, et al. A novel sucrose transporter gene IbSUT4 involves in plant growth and response to abiotic stress through the ABF-dependent ABA signaling pathway in sweetpotato[J]. BMC Plant Biology,2020,20:1-15.
[11]ZHANG H, WANG Z, LI X, et al. The IbBBX24–IbTOE3–IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato[J]. New Phytologist,2022,233(3):1133-1152.
[12]ZHANG B, FAN W M, ZHU Z Z, et al. Functional analysis of MdSUT2. 1,a plasma membrane sucrose transporter from apple[J]. Journal of Integrative Agriculture,2023,22(3):762-775.
[13]ZHANG K, LIU S H, FU Y Z, et al. Establishment of an efficient cotton root protoplast isolation protocol suitable for single-cell RNA sequencing and transient gene expression analysis[J]. Plant Methods,2023,19(1):1-12.
[14]ROTTMANN T M, FRITZ C, LAUTER A, et al. Protoplast-esculin assay as a new method to assay plant sucrose transporters:characterization of AtSUC6 and AtSUC7 sucrose uptake activity in Arabidopsis Col-0 ecotype[J]. Frontiers in Plant Science,2018,9:430.
[15]吴耀武,马彩萍. 甘薯 (Ipomoea batatas) 原生质体的分离、培养与愈伤组织的形成[J]. 植物学报,1979(21):334-338.
[16]BIDNEY D L, SHEPARD J F. Colony development from sweet potato petiole protoplasts and mesophyll cells[J]. Plant Science Letters,1980,18(4):335-342.
[17]OTANI M, SHIMADA T, NIIZEKI H. Mesophyll protoplast culture of sweet potato (Ipomoea batatas L.)[J]. Plant Science,1987,53(2):157-160.
[18]程增书. 甘薯叶柄原生质体的分离,培养及愈伤组织的形成[J]. 河北农作物研究,1992(4):6.
[19]SIHACHAKR D, DUCREUX G. Regeneration of Plants from Protoplast of Sweet Potato (Ipomoea batatas L. Lam.)[C]//CAI Q G, TSAI C K, QIAN Y Q, et al. Plant Protoplasts and Genetic Engineering IV. Berlin,Heidelberg:Springer Berlin Heidelberg,1993.
[20]BELARMINO M M, ABE T, SASAHARA T. Plant regeneration from stem and petiole protoplasts of sweet potato (Ipomoea batatas) and its wild relative,I. lacunose [J]. Plant Cell Tissue & Organ Culture,1994,37:145-150.
[21]李洪杰,梁增霞. 甘薯叶肉和细胞悬浮原生质体植株再生[J]. 国外农学-杂粮作物,1995(44):35-40.
[22]DHIR S K, OGLESBY J, BHAGSARI A S. Plant regeneration via somatic embryogenesis,and transient gene expression in sweet potato protoplasts[J]. Plant Cell Reports,1998,17(9):665-669.
[23]GUO J M, LIU Q C, ZHAI H, et al. Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato,I. batatas (L.) Lam.[J]. Plant Cell Tissue & Organ Culture,2006,87(3):321-327.
[24]LIU T G, XIE Q T, ZHANG M, et al. Reclaiming agriceuticals from sweetpotato (Ipomoea batatas (L.) Lam.) by-products[J]. Foods,2024,13(8):1180.
[25]LIU Q C, ZHAI H, WANG Y, et al. Efficient plant regeneration from embryogenic suspension cultures of sweetpotato[J]. In Vitro Cellular & Developmental Biology Plant,2001,37(5):564-567.
[26]NISHIMAKI T, NOZUE M. Isolation and culture of protoplasts from high anthocyanin-producing callus of sweet potato[J]. Plant cell reports,1985,4(5):248-251.
[27]YU G H, CHENG Q, XIE Z N, et al. An efficient protocol for perennial ryegrass mesophyll protoplast isolation and transformation,and its application on interaction study between LpNOL and LpNYC1[J]. Plant Methods,2017,13:1-8.
[28]WANG Q L, YU G R, CHEN Z Y, et al. Optimization of protoplast isolation,transformation and its application in sugarcane (Saccharum spontaneum L.)[J]. The Crop Journal,2021,9(1):133-142.
[29]GROSSER J W, GMITTER F G. Protoplast fusion for production of tetraploids and triploids:applications for scion and rootstock breeding in citrus[J]. Plant Cell,Tissue and Organ Culture,2011,104 (3):343-357.
[30]HE F, CHEN S B, NING Y S, et al. Rice (Oryza sativa) protoplast isolation and its application for transient expression analysis[J]. Current Protocols in Plant Biology,2016,1(2):373-383.
[31]LIN C S, HSU C T, YANG L H, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis:from single-cell mutation detection to mutant plant regeneration[J]. Plant Biotechnology Journal,2018,16(7):1295-1310.
[32]MENG X Q, LIU S Y, ZHANG C B, et al. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses [J]. Plant Physiology,2023,191(1):747-771.
相似文献/References:
[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(12):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(12):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(12):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(12):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(12):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]杜艳,刘永锋,常有宏,等.梨炭疽病菌原生质体遗传转化体系的建立及GFP标记菌株的获得[J].江苏农业学报,2017,(02):295.[doi:doi:10.3969/j.issn.1000-4440.2017.02.009]
DU Yan,LIU Yong-feng,CHANG You-hong,et al.Establishment of genetic transformation system of Colletotrichum gloeosporioides protoplast and generation of GFP-tagged transformants[J].,2017,(12):295.[doi:doi:10.3969/j.issn.1000-4440.2017.02.009]
[7]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(12):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
[8]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(12):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[9]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(12):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[10]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(12):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]