[1]裴诗宇,杨家伟,吴彬,等.接种蚯蚓和腐解菌对秸秆腐解及土壤矿物结合有机碳形成的影响[J].江苏农业学报,2024,(08):1424-1433.[doi:doi:10.3969/j.issn.1000-4440.2024.08.007]
 PEI Shiyu,YANG Jiawei,WU Bin,et al.Effects of earthworms and straw-decomposing microbial inoculants on straw decomposition and soil mineral-associated organic carbon formation[J].,2024,(08):1424-1433.[doi:doi:10.3969/j.issn.1000-4440.2024.08.007]
点击复制

接种蚯蚓和腐解菌对秸秆腐解及土壤矿物结合有机碳形成的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年08期
页码:
1424-1433
栏目:
耕作栽培·资源环境
出版日期:
2024-08-30

文章信息/Info

Title:
Effects of earthworms and straw-decomposing microbial inoculants on straw decomposition and soil mineral-associated organic carbon formation
作者:
裴诗宇1杨家伟1吴彬1赵叶新1叶成龙1胡水金12
(1.南京农业大学资源与环境科学学院,江苏南京210095;2.北卡罗来纳州立大学昆虫和植物病理学系,美国北卡罗来纳州罗利27695)
Author(s):
PEI Shiyu1YANG Jiawei1WU Bin1ZHAO Yexin1YE Chenglong1HU Shuijin12
(1.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;2.Department of Entomology and Plant Pathology, North Carolina State University, Raleigh 27695, USA)
关键词:
土壤有机碳土壤活性矿物秸秆还田腐解菌蚯蚓
Keywords:
soil organic carbonsoil reactive metalsstraw returningstraw-decomposing microbial inoculantearthworm
分类号:
Q148;S152
DOI:
doi:10.3969/j.issn.1000-4440.2024.08.007
文献标志码:
A
摘要:
为了探究接种蚯蚓和腐解菌对秸秆分解及土壤矿物结合有机碳形成的影响,本研究以商品腐解菌和赤子爱胜蚓为接种物,分别设置仅添加秸秆(CK)、添加秸秆并接种腐解菌(SM)、添加秸秆并接种赤子爱胜蚓(SE)和添加秸秆并同时接种腐解菌和赤子爱胜蚓(SME)的试验处理,探讨腐解菌和蚯蚓的交互作用对土壤温室气体排放、细菌和真菌丰度、团聚体结构、金属离子含量、颗粒有机碳含量及矿物结合有机碳含量的影响及潜在机制。结果表明:(1)与CK相比,SE和SME处理显著增加了秸秆的腐解率;(2)与CK相比,SE和SME处理显著促进了土壤CO2和N2O的排放;SE和SM处理显著增加了土壤细菌的丰度,但是各处理间土壤真菌丰度无显著差异;(3)与CK相比,SE和SME处理显著增加了土壤中可提取钙镁含量,但是各处理间的非晶型铁铝含量和团聚体结构无显著差异;(4)与CK相比,SE和SME处理显著增加了土壤矿物结合有机碳和钙镁结合碳的含量,但是各处理间颗粒有机碳、铁铝结合碳的含量无显著差异;(5)线性回归分析结果表明,土壤钙镁结合碳含量与土壤可提取钙镁含量显著正相关,土壤矿物结合有机碳含量与细菌基因拷贝数呈正相关。综上所述,蚯蚓主导了秸秆的腐解和矿物结合有机碳的形成,蚯蚓和腐解菌的交互作用没有进一步促进秸秆腐解转化为土壤矿物结合有机碳。
Abstract:
To explore the impact of earthworms and straw-decomposing microbial inoculants on straw decomposition and the formation of soil mineral-associated organic carbon, we conducted an incubation experiment with four treatments, i.e., soil + straw (CK), soil + straw + straw-decomposing microbial inoculant (SM), soil + straw + earthworms (SE) and soil + straw + straw-decomposing microbial inoculant + earthworms (SME), to investigate interactive effects of straw-decomposing microbial inoculants and earthworms on soil greenhouse gas emission, bacterial and fungal abundance, soil aggregate structure, metal ion content, particulate organic carbon content and mineral-associated organic carbon content. The results indicated that compared with CK, SE and SME treatments significantly increased the straw decomposition rate and promoted the emission of CO2 and N2O in soil. In addition, SE and SM treatments significantly increased bacterial abundance compared with CK, while there was no significant difference in soil fungal abundance among treatments. Compared with CK, SE and SME treatments significantly increased the contents of extractable calcium and magnesium in soil, and significantly facilitated the formation of mineral-associated organic carbon and Ca/Mg-associated carbon. But there were no significant differences in aggregate structure and the contents of non-crystalline Fe and Al, particulate organic carbon and Fe/Al-associated carbon among treatments. Linear correlation analysis showed that mineral-associated organic carbon formation and Ca/Mg-associated carbon were positively related with bacterial gene copy number and content of soil extractable Ca and Mg, respectively. In conclusion, earthworms dominated straw decomposition and mineral-associated organic carbon formation, and the interactions between earthworms and straw-decomposing microbial inoculants did not further promote the decomposition of straw into mineral-bound organic carbon.

参考文献/References:

[1]SCHIMEL D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology,1995,1(1):77-91.
[2]MANLAY R J, FELLER C, SWIFT M J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture, Ecosystems and Environment,2007,119(3/4):217-233.
[3]TIESSEN H, CUEVAS E, CHACON P. The role of soil organic matter in sustaining soil fertility[J]. Nature,1994,371(6500):783-785.

[4]石祖梁,王飞,王久臣,等. 我国农作物秸秆资源利用特征、技术模式及发展建议[J]. 中国农业科技导报,2019,21(5):8-16.
[5]冷明珠,金月,童喻浩,等. 秸秆还田量对土壤肥力和小麦产量的影响[J]. 浙江农业科学,2022,63(4):679-681.
[6]张国,逯非,赵红,等. 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J]. 农业环境科学学报,2017,36(5):981-988.
[7]章力干,石心怡,王玉宝,等. 秸秆还田对中国主要粮食作物病害影响的Meta分析[J]. 农业工程学报,2022,38(21):93-100.
[8]张建峰,侯红燕,付志金,等. 速腐菌剂在东北地区秸秆堆肥中的功能验证及微生物菌群动态研究[J]. 中国农学通报,2013,29(26):112-117.
[9]董春华,周旋,孙继民,等. 腐解菌剂对红壤橘园圆叶决明腐解及养分释放动态的影响[J]. 中国农学通报,2022,38(1):106-113.
[10]徐杰,王泽懿,刘文越,等. 玉米秸秆田间原位腐解菌剂研制及功能验证[J]. 安徽农业科学,2021,49(13):74-79.
[11]ANGST G, FROUZ J, VAN GROENIGEN J W, et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass[J]. Global Change Biology,2022,28(16):4775-4782.
[12]LAVELLE P, BLANCHART E, MARTIN A, et al. A hierarchical model for decomposition in terrestrial ecosystems:application to soils of the humid tropics[J]. Biotropica,1993,25(2):130-150.
[13]COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience,2019,12(12):989-994.
[14]LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26(1):261-273.
[15]SOKOL N W, WHALEN E D, JILLING A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate:a trait-based perspective[J]. Functional Ecology,2022,36(6):1411-1429.
[16]WITZGALL K, VIDAL A, SCHUBERT D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications,2021,12(1):4115.
[17]LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology,2019,25(11):3578-3590.
[18]MILTNER A, BOMBACH P, SCHMIDT-BRCKEN B, et al. SOM genesis:microbial biomass as a significant source[J]. Biogeochemistry,2012,111(1/2/3):41-55.
[19]LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature,2015,528(7580):60-68.
[20]COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience,2015,8(10):776-779.
[21]姚云柯. 促腐菌对水稻秸秆腐解的影响及其机理[D]. 北京:中国农业科学院,2021.
[22]ANGST G, MUELLER C W, PRATER I, et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass[J]. Communications Biology,2019,2:441.
[23]LIU T, CHEN X Y, GONG X, et al. Earthworms coordinate soil biota to improve multiple ecosystem functions[J]. Current Biology,2019,29(20):3420-3429.
[24]ZHANG W, HENDRIX P F, DAME L E, et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization[J]. Nature Communications,2013,4:2576.
[25]MIKUTTA R, LORENZ D, GUGGENBERGER G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption:clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta,2014,144:258-276.
[26]KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change,2015,5(6):588-595.
[27]赵天鑫,俄胜哲,袁金华,等. 土壤中钙与有机碳之间相互作用的研究进展与展望[J]. 中国农学通报,2022,38(14):77-81.
[28]张孟豪,吴家龙,张池,等. 赤子爱胜蚓对赤红壤铝形态的影响[J]. 华南农业大学学报,2020,41(2):48-54.
[29]DOBSON A M, BLOSSEY B, RICHARDSON J B. Invasive earthworms change nutrient availability and uptake by forest understory plants[J]. Plant and Soil,2017,421(1/2):175-190.
[30]LAMBKIN D C, GWILLIAM K H, LAYTON C, et al. Production and dissolution rates of earthworm-secreted calcium carbonate[J]. Pedobiologia,2011,54:S119-S129.
[31]YANG X Y, DUAN P P, LI G T, et al. Spatial-heterogeneous granulation of organic amendments and chemical fertilizer stimulated N2O emissions from agricultural soil:an microcosm study[J]. Journal Environmental Management,2021,277:111437.
[32]CHIVENGE P, VANLAUWE B, GENTILE R, et al. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation[J]. Soil Biology and Biochemistry,2011,43(3):657-666.
[33]蒋雪洋,张前前,沈浩杰,等. 生物质炭对稻田土壤团聚体稳定性和微生物群落的影响[J]. 土壤学报,2021,58(6):1564-1573.
[34]YE C, CHEN D, HALL S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon:plant,microbial and geochemical controls[J]. Ecology Letters,2018,21(8):1162-1173.
[35]HUANG J, ZHANG W, LIU M, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil[J]. Soil Biology and Biochemistry,2015,90:152-160.
[36]BRIONES M J I, OSTLE N J, PIEARCE T G. Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ[J]. Soil Biology and Biochemistry,2008,40(2):554-557.
[37]黄福珍. 论蚯蚓对土壤结构形成及性态的影响[J]. 土壤学报,1979,16(3):211-217.
[38]程思远,李欢,梅慧玲,等. 接种蚯蚓与添加有机物料对茶园土壤结构的影响[J]. 土壤学报,2021,58(1):259-268.
[39]BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry,2005,37(2):251-258.

[40]王笑,王帅,滕明姣,等. 两种代表性蚯蚓对设施菜地土壤微生物群落结构及理化性质的影响[J]. 生态学报,2017,37(15):5146-5156.

[41]崔莹莹,吴家龙,张池,等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响[J]. 华南农业大学学报,2020,41(1):83-90.

[42]JIANG Y B, WANG J, MUHAMMAD S, et al. How do earthworms affect decomposition of residues with different quality apart from fragmentation and incorporation?[J]. Geoderma,2018,326:68-75.

[43]罗天相,李辉信,王同,等. 线虫和蚯蚓对土壤微量气体排放的影响[J]. 生态学报,2008,28(3):993-999.

[44]卢明珠,吕宪国,管强,等. 蚯蚓对土壤温室气体排放的影响及机制研究进展[J]. 土壤学报,2015,52(6):1209-1225.

[45]LIU Z G, ZOU X M. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest[J]. Ecological Applications,2002,12(5):1406-1417.

[46]POTTHOFF M, JOERGENSEN R, WOLTERS V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought[J]. Soil Biology and Biochemistry,2001,33(4/5):583-591.

[47]DRAKE H L, HORN M A. Earthworms as a transient heaven for terrestrial denitrifying microbes:a review[J]. Engineering in Life Sciences,2006,6(3):261-265.

[48]ELLIOTT P W, KNIGHT D, ANDERSON J M. Variables controlling denitrification from earthworm casts and soil in permanent pastures[J]. Biology and Fertility of Soils,1991,11(1):24-29.

[49]LUBBERS I M, PULLEMAN M M, VAN GROENIGEN J W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon?[J]. Soil Biology and Biochemistry,2017,105:12-24.
[50]KUIPER I, DE DEYN G B, THAKUR M P, et al. Soil invertebrate fauna affect N2O emissions from soil[J]. Global Change Biology,2013,19(9):2814-2825.
[51]陈帅,刘峙嵘,曾凯. 腐秆剂对水稻秸秆腐解性能的影响[J]. 环境工程学报,2016,10(2):839-844.
[52]杨欣润,许邶,何治逢,等. 整合分析中国农田腐秆剂施用对秸秆腐解和作物产量的影响[J]. 中国农业科学,2020,53(7):1359-1367.
[53]PIETRI J A, BROOKES P. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry,2008,40(7):1856-1861.
[54]ROUSK J, BAATH E, BROOKES P, et al. Soil bacterial and fungal communities across a pH gradient in arable soil[J]. The ISME Journal,2010,4:1340-1351.
[55]XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry,2017,114:238-247.
[56]WISEMAN C L S, PTTMANN W. Interactions between mineral phases in the preservation of soil organic matter[J]. Geoderma,2006,134(1/2):109-118.
[57]VOGELSANG V, KAISER K, WAGNER F E, et al. Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions[J]. Geoderma,2016,278:40-48.
[58]WINKLER P, KAISER K, THOMPSON A, et al. Contrasting evolution of iron phase composition in soils exposed to redox fluctuations[J]. Geochimica et Cosmochimica Acta,2018,235:89-102.

相似文献/References:

[1]范如芹,罗佳,严少华,等.长期免耕及常规耕作对土壤胡敏酸含量及其结构的影响[J].江苏农业学报,2015,(01):80.[doi:10.3969/j.issn.1000-4440.2015.01.012]
 FAN Ru-qin,LUO Jia,YAN Shao-hua,et al.Content and structural features of humic acid in black soil affected by long-term no-tillage and conventional tillage[J].,2015,(08):80.[doi:10.3969/j.issn.1000-4440.2015.01.012]
[2]朱阳春,张振华,赵学勇,等.河套灌区土壤有机碳和总碳的空间异质性及相关性分析[J].江苏农业学报,2017,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2017.06.014]
 ZHU Yang-chun,ZHANG Zhen-hua,ZHAO Xue-yong,et al.Spatial heterogeneity and relationship between soil total organic carbon and total carbon in the Hetao irrigation district[J].,2017,(08):1294.[doi:doi:10.3969/j.issn.1000-4440.2017.06.014]
[3]许慧,BUI Van Thang,范洪旺,等.城市和郊区麻栎林土壤有机碳组分及管理指数变化特征[J].江苏农业学报,2022,38(02):369.[doi:doi:10.3969/j.issn.1000-4440.2022.02.010]
 XU Hui,BUI Van Thang,FAN Hong-wang,et al.Variation characteristics of soil organic carbon composition and management index of Quercus acutissima forests in urban and suburban areas[J].,2022,38(08):369.[doi:doi:10.3969/j.issn.1000-4440.2022.02.010]
[4]高琳,龙怀玉,陈晓远,等.基于中国土壤系统分类土纲的河北省土壤有机碳和氮含量与密度对比分析[J].江苏农业学报,2022,38(03):657.[doi:doi:10.3969/j.issn.1000-4440.2022.03.011]
 GAO Lin,LONG Huai-yu,CHEN Xiao-yuan,et al.Comparation of organic carbon and nitrogen contents and densities of major soil orders in Hebei province based on Chinese soil taxonomy[J].,2022,38(08):657.[doi:doi:10.3969/j.issn.1000-4440.2022.03.011]

备注/Memo

备注/Memo:
收稿日期:2023-07-07基金项目:江苏省自然科学基金项目(BK20200552)作者简介:裴诗宇(1998-),男,河南新乡人,硕士研究生,主要从事土壤动物对土壤有机碳动态影响的相关研究。(E-mail)2021803157@stu.njau.edu.cn通讯作者:叶成龙,(E-mail)chenglongye@njau.edu.cn
更新日期/Last Update: 2024-09-18