参考文献/References:
[1]SCHIMEL D S. Terrestrial ecosystems and the carbon cycle[J]. Global Change Biology,1995,1(1):77-91.
[2]MANLAY R J, FELLER C, SWIFT M J. Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems[J]. Agriculture, Ecosystems and Environment,2007,119(3/4):217-233.
[3]TIESSEN H, CUEVAS E, CHACON P. The role of soil organic matter in sustaining soil fertility[J]. Nature,1994,371(6500):783-785.
[4]石祖梁,王飞,王久臣,等. 我国农作物秸秆资源利用特征、技术模式及发展建议[J]. 中国农业科技导报,2019,21(5):8-16.
[5]冷明珠,金月,童喻浩,等. 秸秆还田量对土壤肥力和小麦产量的影响[J]. 浙江农业科学,2022,63(4):679-681.
[6]张国,逯非,赵红,等. 我国农作物秸秆资源化利用现状及农户对秸秆还田的认知态度[J]. 农业环境科学学报,2017,36(5):981-988.
[7]章力干,石心怡,王玉宝,等. 秸秆还田对中国主要粮食作物病害影响的Meta分析[J]. 农业工程学报,2022,38(21):93-100.
[8]张建峰,侯红燕,付志金,等. 速腐菌剂在东北地区秸秆堆肥中的功能验证及微生物菌群动态研究[J]. 中国农学通报,2013,29(26):112-117.
[9]董春华,周旋,孙继民,等. 腐解菌剂对红壤橘园圆叶决明腐解及养分释放动态的影响[J]. 中国农学通报,2022,38(1):106-113.
[10]徐杰,王泽懿,刘文越,等. 玉米秸秆田间原位腐解菌剂研制及功能验证[J]. 安徽农业科学,2021,49(13):74-79.
[11]ANGST G, FROUZ J, VAN GROENIGEN J W, et al. Earthworms as catalysts in the formation and stabilization of soil microbial necromass[J]. Global Change Biology,2022,28(16):4775-4782.
[12]LAVELLE P, BLANCHART E, MARTIN A, et al. A hierarchical model for decomposition in terrestrial ecosystems:application to soils of the humid tropics[J]. Biotropica,1993,25(2):130-150.
[13]COTRUFO M F, RANALLI M G, HADDIX M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience,2019,12(12):989-994.
[14]LAVALLEE J M, SOONG J L, COTRUFO M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology,2020,26(1):261-273.
[15]SOKOL N W, WHALEN E D, JILLING A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate:a trait-based perspective[J]. Functional Ecology,2022,36(6):1411-1429.
[16]WITZGALL K, VIDAL A, SCHUBERT D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications,2021,12(1):4115.
[17]LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Global Change Biology,2019,25(11):3578-3590.
[18]MILTNER A, BOMBACH P, SCHMIDT-BRCKEN B, et al. SOM genesis:microbial biomass as a significant source[J]. Biogeochemistry,2012,111(1/2/3):41-55.
[19]LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature,2015,528(7580):60-68.
[20]COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience,2015,8(10):776-779.
[21]姚云柯. 促腐菌对水稻秸秆腐解的影响及其机理[D]. 北京:中国农业科学院,2021.
[22]ANGST G, MUELLER C W, PRATER I, et al. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass[J]. Communications Biology,2019,2:441.
[23]LIU T, CHEN X Y, GONG X, et al. Earthworms coordinate soil biota to improve multiple ecosystem functions[J]. Current Biology,2019,29(20):3420-3429.
[24]ZHANG W, HENDRIX P F, DAME L E, et al. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization[J]. Nature Communications,2013,4:2576.
[25]MIKUTTA R, LORENZ D, GUGGENBERGER G, et al. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption:clues from arsenate batch adsorption[J]. Geochimica et Cosmochimica Acta,2014,144:258-276.
[26]KEILUWEIT M, BOUGOURE J J, NICO P S, et al. Mineral protection of soil carbon counteracted by root exudates[J]. Nature Climate Change,2015,5(6):588-595.
[27]赵天鑫,俄胜哲,袁金华,等. 土壤中钙与有机碳之间相互作用的研究进展与展望[J]. 中国农学通报,2022,38(14):77-81.
[28]张孟豪,吴家龙,张池,等. 赤子爱胜蚓对赤红壤铝形态的影响[J]. 华南农业大学学报,2020,41(2):48-54.
[29]DOBSON A M, BLOSSEY B, RICHARDSON J B. Invasive earthworms change nutrient availability and uptake by forest understory plants[J]. Plant and Soil,2017,421(1/2):175-190.
[30]LAMBKIN D C, GWILLIAM K H, LAYTON C, et al. Production and dissolution rates of earthworm-secreted calcium carbonate[J]. Pedobiologia,2011,54:S119-S129.
[31]YANG X Y, DUAN P P, LI G T, et al. Spatial-heterogeneous granulation of organic amendments and chemical fertilizer stimulated N2O emissions from agricultural soil:an microcosm study[J]. Journal Environmental Management,2021,277:111437.
[32]CHIVENGE P, VANLAUWE B, GENTILE R, et al. Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation[J]. Soil Biology and Biochemistry,2011,43(3):657-666.
[33]蒋雪洋,张前前,沈浩杰,等. 生物质炭对稻田土壤团聚体稳定性和微生物群落的影响[J]. 土壤学报,2021,58(6):1564-1573.
[34]YE C, CHEN D, HALL S J, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon:plant,microbial and geochemical controls[J]. Ecology Letters,2018,21(8):1162-1173.
[35]HUANG J, ZHANG W, LIU M, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil[J]. Soil Biology and Biochemistry,2015,90:152-160.
[36]BRIONES M J I, OSTLE N J, PIEARCE T G. Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ[J]. Soil Biology and Biochemistry,2008,40(2):554-557.
[37]黄福珍. 论蚯蚓对土壤结构形成及性态的影响[J]. 土壤学报,1979,16(3):211-217.
[38]程思远,李欢,梅慧玲,等. 接种蚯蚓与添加有机物料对茶园土壤结构的影响[J]. 土壤学报,2021,58(1):259-268.
[39]BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry,2005,37(2):251-258.
[40]王笑,王帅,滕明姣,等. 两种代表性蚯蚓对设施菜地土壤微生物群落结构及理化性质的影响[J]. 生态学报,2017,37(15):5146-5156.
[41]崔莹莹,吴家龙,张池,等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响[J]. 华南农业大学学报,2020,41(1):83-90.
[42]JIANG Y B, WANG J, MUHAMMAD S, et al. How do earthworms affect decomposition of residues with different quality apart from fragmentation and incorporation?[J]. Geoderma,2018,326:68-75.
[43]罗天相,李辉信,王同,等. 线虫和蚯蚓对土壤微量气体排放的影响[J]. 生态学报,2008,28(3):993-999.
[44]卢明珠,吕宪国,管强,等. 蚯蚓对土壤温室气体排放的影响及机制研究进展[J]. 土壤学报,2015,52(6):1209-1225.
[45]LIU Z G, ZOU X M. Exotic earthworms accelerate plant litter decomposition in a Puerto Rican pasture and a wet forest[J]. Ecological Applications,2002,12(5):1406-1417.
[46]POTTHOFF M, JOERGENSEN R, WOLTERS V. Short-term effects of earthworm activity and straw amendment on the microbial C and N turnover in a remoistened arable soil after summer drought[J]. Soil Biology and Biochemistry,2001,33(4/5):583-591.
[47]DRAKE H L, HORN M A. Earthworms as a transient heaven for terrestrial denitrifying microbes:a review[J]. Engineering in Life Sciences,2006,6(3):261-265.
[48]ELLIOTT P W, KNIGHT D, ANDERSON J M. Variables controlling denitrification from earthworm casts and soil in permanent pastures[J]. Biology and Fertility of Soils,1991,11(1):24-29.
[49]LUBBERS I M, PULLEMAN M M, VAN GROENIGEN J W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon?[J]. Soil Biology and Biochemistry,2017,105:12-24.
[50]KUIPER I, DE DEYN G B, THAKUR M P, et al. Soil invertebrate fauna affect N2O emissions from soil[J]. Global Change Biology,2013,19(9):2814-2825.
[51]陈帅,刘峙嵘,曾凯. 腐秆剂对水稻秸秆腐解性能的影响[J]. 环境工程学报,2016,10(2):839-844.
[52]杨欣润,许邶,何治逢,等. 整合分析中国农田腐秆剂施用对秸秆腐解和作物产量的影响[J]. 中国农业科学,2020,53(7):1359-1367.
[53]PIETRI J A, BROOKES P. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biology and Biochemistry,2008,40(7):1856-1861.
[54]ROUSK J, BAATH E, BROOKES P, et al. Soil bacterial and fungal communities across a pH gradient in arable soil[J]. The ISME Journal,2010,4:1340-1351.
[55]XIONG W, GUO S, JOUSSET A, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome[J]. Soil Biology and Biochemistry,2017,114:238-247.
[56]WISEMAN C L S, PTTMANN W. Interactions between mineral phases in the preservation of soil organic matter[J]. Geoderma,2006,134(1/2):109-118.
[57]VOGELSANG V, KAISER K, WAGNER F E, et al. Transformation of clay-sized minerals in soils exposed to prolonged regular alternation of redox conditions[J]. Geoderma,2016,278:40-48.
[58]WINKLER P, KAISER K, THOMPSON A, et al. Contrasting evolution of iron phase composition in soils exposed to redox fluctuations[J]. Geochimica et Cosmochimica Acta,2018,235:89-102.