参考文献/References:
[1]MILLS E M, BARLOW V L, LUK L Y P, et al. Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications[J]. Cell Biology and Toxicology,2020,36(1):17-29.
[2]TANIHARA F, HIRATA M, OTOI T. Current status of the application of gene editing in pigs[J]. Journal of Reproduction and Development,2021,67(3):177-187.
[3]YIN K Q, GAO C X, QIU J L. Progress and prospects in plant genome editing[J]. Nature Plants,2017,3:17107.
[4]GANTZ V M, AKBARI O S. Gene editing technologies and applications for insects[J]. Current Opinion in Insect Science,2018,28:66-72.
[5]ADIEGO-PREZ B, RANDAZZO P, DARAN J M, et al. Multiplex genome editing of microorganisms using CRISPR-Cas[J]. FEMS Microbiology Letters,2019,366(8):86.
[6]CˇERMK T, BALTES N J, CˇEGAN R, et al. High-frequency, precise modification of the tomato genome[J]. Genome Biology,2015,16:232.
[7]BANDYOPADHYAY A, YIN X, BISWAL A, et al. CRISPR-Cas9-mediated genome editing of rice towards better grain quality[J]. Methods in Molecular Biology,2019,1892:311-336.
[8]JIANG W Z, HENRY I M, LYNAGH P G, et al. Significant enhancement of fatty acid composition in seeds of the allohexaploid,Camelina sativa,using CRISPR/Cas9 gene editing[J]. Plant Biotechnology Journal,2017,15(5):648-657.
[9]张威,许文静,许亚男,等. 基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J]. 江苏农业学报,2023,39(2):321-327.
[10]PICKAR-OLIVER A, GERSBACH C A. The next generation of CRISPR-Cas technologies and applications[J]. Nature Review Molecular Cell Biology,2019,20(8):490-507.
[11]CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[12]WEI Y D, QIU Y, CHEN Y H, et al. CRISPR/Cas9 with single guide RNA expression driven by small tRNA promoters showed reduced editing efficiency compared to a U6 promoter[J]. RNA,2017,23(1):1-5.
[13]GAO J P, WANG G H, MA S Y, et al. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum[J]. Plant Molecular Biology,2015,87(1/2):99-110.
[14]卞书迅,韩晓蕾,袁高鹏,等. 苹果U6启动子的克隆及功能分析[J]. 中国农业科学,2019,52(23):4364-4373.
[15]唐志强,李小丽,许小涵,等. 金银花U6启动子的克隆及转录活性分析[J]. 山东科学,2022,35(2):11-17.
[16]李强,揭琴,刘庆昌,等. 甘薯基因组DNA高效快速提取方法[J]. 分子植物育种,2007,5(5):743-746.
[17]SHAN Q W, WANG Y P, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.
[18]SATHEESH V, ZHANG H, WANG X T, et al. Precise editing of plant genomes-prospects and challenges[J]. Seminars in Cell & Developmental Biology,2019,96:115-123.
[19]JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Research,2013,41(20):e188.
[20]FAUSER F, SCHIML S, PUCHTA H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana[J]. The Plant Journal,2014,79(2):348-359.
[21]LI J F, NORVILLE J E, AACH J, et al. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J]. Nature Biotechnology,2013,31(8):688-691.
[22]ZHOU H B, LIU B, WEEKS D P, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Research,2014,42(17):10903-10914.
[23]BORTESI L, FISCHER R. The CRISPR/Cas9 system for plant genome editing and beyond[J]. Biotechnology Advances,2015,33(1):41-52.
[24]MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284.
[25]BELHAJ K, CHAPARRO-GARCIA A, KAMOUN S, et al. Plant genome editing made easy:targeted mutagenesis in model and crop plants using the CRISPR/Cas system[J]. Plant Methods,2013,9(1):39.
[26]WANG M B, HELLIWELL C A, WU L M, et al. Hairpin RNAs derived from RNA polymerase Ⅱ and polymerase Ⅲ promoter-directed transgenes are processed differently in plants[J]. RNA,2008,14(5):903-913.
[27]LONG L, GUO D D, GAO W, et al. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression[J]. Plant Methods,2018,14:85.
[28]DI Y H, SUN X J, HU Z, et al. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean[J]. Biochemical and Biophysical Research Communications,2019,519(4):819-823.
[29]BERNARD G, GAGNEUL D, ALVES DOS SANTOS H, et al. Efficient genome editing using CRISPR/Cas9 technology in chicory[J]. International Journal of Molecular Sciences,2019,20(5):1155.
[30]LIU H Y, WANG K, JIA Z M, et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system[J]. Journal of Experimental Botany, 2020, 71(4): 1337-1349.
[31]WANG H X, WU Y L, ZHANG Y D, et al. CRISPR/Cas9-Based mutagenesis of starch biosynthetic genes in sweetpotato (Ipomoea Batatas) for the improvement of starch quality[J]. International Journal of Molecular Sciences,2019,20(19):4702.
[32]刘霞宇. 甘薯CRISPR/Cas9基因编辑系统的建立及miR2111调控甘薯块根中花青素积累的功能研究[D]. 太原:山西农业大学,2020.
相似文献/References:
[1]唐忠厚,陈晓光,魏 猛,等.低钾下光照度与CO2浓度对不同钾效率基因型甘薯光合作用的影响[J].江苏农业学报,2016,(02):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
TANG Zhong-hou,CHEN Xiao-guang,WEI Meng,et al.Photosynthesis in response to light intensity and CO2 concentration under low potassium condition in sweet potato with different genotypes of potassium utilization efficiency[J].,2016,(06):267.[doi:10.3969/j.issn.1000-4440.2016.02.005]
[2]董 月,安 霞,张 辉,等.不同品种甘薯的生物量累积、养分吸收和分配规律[J].江苏农业学报,2016,(02):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
DONG Yue,AN Xia,ZHANG Hui,et al.Biomass accumulation and nutrients uptake and distribution in sweet potato cultivars[J].,2016,(06):313.[doi:10.3969/j.issn.1000-4440.2016.02.012]
[3]安霞,董月,吴建燕,等.氮肥形态对甘薯产量和养分吸收的影响[J].江苏农业学报,2016,(05):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
AN Xia,DONG Yue,WU Jian-yan,et al.Effects of forms of nitrogen fertilizer on yield and nutrient uptake of sweet potato[J].,2016,(06):1049.[doi:10.3969/j.issn.1000-4440.2016.05.015]
[4]张辉,朱绿丹,安霞,等.水分和钾肥耦合对甘薯光合特性和水分利用效率的影响[J].江苏农业学报,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
ZHANG Hui,ZHU Lü-dan,AN Xia,et al.Effects of water coupled with K on the photosynthetic characteristics of sweet potato and its water use efficiency[J].,2016,(06):1294.[doi:doi:10.3969/j.issn.1000-4440.2016.06.016]
[5]张成玲,杨冬静,赵永强,等.镰刀菌胁迫对不同甘薯品种抗氧化酶及MDA含量的影响[J].江苏农业学报,2017,(02):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
ZHANG Cheng-ling,YANG Dong-jing,ZHAO Yong-qiang,et al.Effect of Fusarium stress on antioxidant enzymes and MDA content in sweet potato varieties[J].,2017,(06):263.[doi:doi:10.3969/j.issn.1000-4440.2017.02.004]
[6]齐鹤鹏,安霞,刘源,等.施钾量对甘薯产量及钾素吸收利用的影响[J].江苏农业学报,2016,(01):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
QI He-peng,AN Xia,LIU Yuan,et al.Effects of potassium application rates on yield, potassium uptake and utilization in sweet potato (Ipomoea batatas L.) genotypes[J].,2016,(06):84.[doi:10.3969/j.issn.1000-4440.2016.01.013
]
[7]马洪波,李传哲,宁运旺,等.硫缺乏对不同甘薯品种的生长及矿质元素吸收的影响[J].江苏农业学报,2015,(05):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
MA Hong-bo,LI Chuan-zhe,NING Yun-wang,et al.Growth and mineral elements absorptions of different sweet potato varieties in response to sulfur deficiency[J].,2015,(06):1024.[doi:doi:10.3969/j.issn.1000-4440.2015.05.013]
[8]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(06):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[9]易中懿,汪翔,徐雪高,等.品种创新与甘薯产业发展[J].江苏农业学报,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
YI Zhong-yi,WANG Xiang,XU Xue-gao,et al.Breeding innovation and development of sweet potato industry[J].,2018,(06):1401.[doi:doi:10.3969/j.issn.1000-4440.2018.06.028]
[10]李春华,汪吉东,张辉,等.磷缺乏对不同甘薯品种根系生长及磷素吸收的影响[J].江苏农业学报,2019,(01):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]
LI Chun-hua,WANG Ji-dong,ZHANG Hui,et al.Responses of root growth and phosphorus uptake for sweet potatoes under low phosphorus supply[J].,2019,(06):91.[doi:doi:10.3969/j.issn.1000-4440.2019.01.013]