[1]郭松,常庆瑞,赵泽英,等.基于高光谱的不同生育期玉米花青素含量估测[J].江苏农业学报,2024,(02):303-311.[doi:doi:10.3969/j.issn.1000-4440.2024.02.012]
 GUO Song,CHANG Qing-rui,ZHAO Ze-ying,et al.Estimation of anthocyanin content in maize at different growth stages based on hyperspectral technology[J].,2024,(02):303-311.[doi:doi:10.3969/j.issn.1000-4440.2024.02.012]
点击复制

基于高光谱的不同生育期玉米花青素含量估测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年02期
页码:
303-311
栏目:
农业信息工程
出版日期:
2024-02-25

文章信息/Info

Title:
Estimation of anthocyanin content in maize at different growth stages based on hyperspectral technology
作者:
郭松1常庆瑞2赵泽英1李莉婕1童倩倩1
(1.贵州省农业科技信息研究所,贵州贵阳550006;2.西北农林科技大学资源环境学院,陕西杨凌712100)
Author(s):
GUO Song1CHANG Qing-rui2ZHAO Ze-ying1LI Li-jie1TONG Qian-qian1
(1.Guizhou Agricultural Science and Technology Information Institute, Guiyang 550006, China;2.College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China)
关键词:
玉米花青素光谱变换支持向量回归极限学习机回归
Keywords:
maizeanthocyaninspectral transformationsupport vector regressionextreme learning machine regression
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2024.02.012
摘要:
花青素(Anthocyanin)是玉米体内的重要色素,对花青素含量的便捷、无损估测对监测玉米长势具有重要意义。利用关中地区拔节期、大喇叭口期、抽雄期以及乳熟期玉米冠层叶片Anth值及高光谱数据建立多个单因素模型和多因素模型。结果表明,不同生育期玉米叶片原始光谱特征总体一致、局部不同。变换光谱的特征波段与Anth值相关性优于原始光谱,其中一阶导数光谱特征波段最优。连续投影算法(SPA)降维能力较好,筛选出的建模参数在2~27个。最优单因素模型与多元性线性回归模型精度均为抽雄期最优,拔节期和大喇叭口期次之,乳熟期最差。所有模型中,抽雄期基于一阶导数光谱的麻雀搜索算法-极限学习机回归(SSA-ELMR)模型精度最佳,该模型建模与验证R2分别为0.847、0.895,相应nRMSE为6.44%和7.21%。本研究结果表明抽雄期是玉米叶片花青素含量反演的最佳时期,极限学习机能进一步提升传统模型精度。
Abstract:
Anthocyanin is an important pigment in maize. Convenient and non-destructive estimation of anthocyanin content is of great significance for monitoring maize growth. Based on the Anth values and hyperspectral data of maize canopy leaves at jointing stage, flare opening stage, tasseling stage and milk-ripe stage in Guanzhong area, multiple single-factor models and multi-factor models were established. The results showed that the original spectral characteristics of maize leaves at different growth stages were generally consistent, but locally different. The correlations between the characteristic bands and Anth values of the transform spectrum were better than those of the primary spectrum, and the characteristic bands of the first derivative spectrum was the best. The successive projections algorithm (SPA) had a good dimension reduction effect, and the selected modeling parameters rangeed from two to 27. The accuracy of the optimal single factor model and multiple linear regression model was the best at tasseling stage, followed by jointing stage and flare opening stage, and the worst at milk-ripe stage. Among all the models, the sparrow search algorithm-extreme learning machine regression (SSA-ELMR) model based on the first derivative spectrum at the tasseling stage was the optimal model in this study. The R2 values for modeling and verification of this model were 0.847 and 0.895, respectively, and the corresponding nRMSE values were 6.44% and 7.21%. The results of this study indicate that the tasseling period was the optimal period for inverting the anthocyanin content in maize leaves, and the extreme learning machine could further improve the accuracy of traditional models.

参考文献/References:

[1]CLOSE D C, BEADLE C L. The ecophysiology of foliar anthocyanin[J]. The Botanical Review,2003,69(2):149-161.
[2]LINDA-CHALKER C. Environmental significance of anthocyanins in plant stress responses[J]. Photochemistry and Photobiology,1999,70(1):1-9.
[3]GOULD K S, MCKELVIE J, MARKHAM K R. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury[J]. Plant,2010,25(10):1261-1269.
[4]陈敏. 食品化学[M]. 北京:中国林业出版社,2008.
[5]吴金滢,胡迪,孙新. 原花青素抗衰老作用的研究进展[J]. 吉林医药学院学报,2022,43(6):452-454.
[6]GITELSON A A, CHIVKUNOVA O B, MERZLYAK M N. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves[J]. American Journal of Botany,2009,96(10):1861-1868.
[7]刘芳芳,向成钢,张宏,等. 高效液相色谱法与pH示差法测定紫荚豌豆花青素含量的比较[J]. 食品科技,2022,47(1):298-303.
[8]STEELE M R, GITELSON A A, RUNDQUIST D C, et al. Nondestructive estimation of anthocyanin content in grapevine leaves[J]. American Journal of Enology and Viticulture,2009,60(1):87-92.
[9]GITELSON A, SOLOVCHENKO A. Generic algorithms for estimating foliar pigment content[J]. Geophysical Research Letters,2017,44(18):9293-9298.
[10]CHOI J H, PARK S H, JUNG D H, et al. Hyperspectral imaging-based multiple predicting models for functional component contents in Brassica juncea[J]. Agriculture-Basel,2022,12:1515.
[11]刘秀英,申健,常庆瑞,等. 基于可见/近红外光谱的牡丹叶片花青素含量预测[J]. 农业机械学报,2015,46(9):319-324.
[12]田明璐,班松涛,常庆瑞,等. 高光谱影像的苹果花叶病叶片花青素定量反演[J]. 光谱学与光谱分析,2017,37(10):3187-3192.
[13]LEI W, WANG P X, LI L, et al. Developing an integrated indicator for monitoring maize growth condition using remotely sensed vegetation temperature condition index and leaf area index[J]. Computers and Electronics in Agriculture,2018,152:340-349.
[14]王伟东,常庆瑞,王玉娜. 冬小麦叶片花青素相对含量高光谱监测[J]. 麦类作物学报,2020,40(6):754-761.
[15]杨可明,郭达志,陈云浩. 高光谱植被遥感数据光谱特征分析[J]. 计算机工程与应用,2006,42(31):213-215.
[16]张贤龙,张飞,张海威,等. 基于光谱变换的高光谱指数土壤盐分反演模型优选[J]. 农业工程学报,2018,34(1):110-117.
[17]李粉玲,常庆瑞. 基于连续统去除法的冬小麦叶片全氮含量估算[J]. 农业机械学报,2017,48(7):174-179.
[18]陈澜,常庆瑞,高一帆,等. 猕猴桃叶片叶绿素含量高光谱估算模型研究[J]. 西北农林科技大学学报(自然科学版),2020,48(6):79-89,98.
[19]张佑铭. 基于多源遥感数据的猕猴桃园LAI反演研究[D]. 杨凌:西北农林科技大学,2022.
[20]SOARES S F C, GOMES A A, FILHO A R G, et al. The successive projections algorithm[J]. Trac-Trends in Analytical Chemistry,2013,42:84-98.
[21]VERRELST J, MUNOZ J, ALONSO L, et al. Machine learning regression algorithms for biophysical parameter retrieval:Opportunities for sentinel-2 and-3[J]. Remote Sensing of Environment,2012,118:127-139.
[22]LI W, CHANG Q R, LI F L, et al. Effects of growth stage development on paddy rice leaf area index prediction models[J]. Remote Sensing,2019,11(3):361.
[23]LEE H, WANG J F, LEBLON B. Using linear regression,random forests,and support vector machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn[J]. Remote Sensing,2020,12(13):2071.
[24]由明明,常庆瑞,田明璐,等. 基于随机森林回归的油菜叶片SPAD值遥感估算[J]. 干旱地区农业研究,2019,37(1):74-81.
[25]余蛟洋,常庆瑞,由明明,等. 基于高光谱和BP神经网络模型苹果叶片SPAD值遥感估算[J]. 西北林学院学报,2018,33(2):156-165.
[26]HUANG G, HUANG G B, SONG S, et al. Trends in extreme learning machines:a review[J]. Neural Networks,2015,61:6132-6148.
[27]薛建凯. 一种新型的群智能优化技术的研究与应用[D]. 上海:东华大学,2020.
[28]刘俊,孟庆岩,葛小三,等. 基于BP神经网络的夏玉米多生育期叶面积指数反演研究[J]. 遥感技术与应用,2020,35(1):174-184.
[29]袁媛,瑚波,武兴厚,等. 基于植被指数的夏玉米不同生育期叶绿素含量遥感估算[J]. 中国农学通报,2015,31(15):254-259.
[30]落莉莉,常庆瑞,武旭梅,等. 夏玉米叶片光合色素含量高光谱估算[J]. 干旱地区农业研究,2019,37(4):178-183.
[31]LUO L L, CHANG Q R, WANG Q, et al. Identification and severity monitoring of maize dwarf mosaic virus infection based on hyperspectral measurements[J]. Remote Sensing,2021,13(22):4560.
[32]王玉娜,李粉玲,王伟东,等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报,2020,40(11):1389-1398.
[33]白丽敏,李粉玲,常庆瑞,等. 结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度[J]. 植物营养与肥料学报,2018,24(5):1178-1184.
[34]郝勇,孙旭东,王豪. 基于改进连续投影算法的光谱定量模型优化[J]. 江苏大学学报(自然科学版),2013,34(1):49-53.
[35]张敏,郭涛,刘轲,等. 基于高光谱植被指数的水稻LAI遥感估算[J/OL]. 西南农业学报,2022,35(11):1-10.
[36]高岳林,杨钦文,王晓峰,等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版),2022,43(3):21-30.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(02):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(02):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(02):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(02):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(02):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(02):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(02):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(02):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2022-12-06基金项目:贵州省农业科学院青年科技基金项目 [黔农科院科技创新(2022)14号] 作者简介:郭松(1996-),男,贵州贵阳人,硕士,研究实习员,主要从事农业遥感研究。(E-mail)1185716519@qq.com通讯作者:赵泽英,(E-mail)623619534@qq.com
更新日期/Last Update: 2024-03-17