[1]唐跃辉,赵雨凡,蒋心言,等.麻风树JcHDZ28基因克隆与功能分析[J].江苏农业学报,2024,(01):39-46.[doi:doi:10.3969/j.issn.1000-4440.2024.01.004]
 TANG Yue-hui,ZHAO Yu-fan,JIANG Xin-yan,et al.Cloning and function analysis of JcHDZ28 gene from Jatropha curcas L.[J].,2024,(01):39-46.[doi:doi:10.3969/j.issn.1000-4440.2024.01.004]
点击复制

麻风树JcHDZ28基因克隆与功能分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
39-46
栏目:
遗传育种·生理生化
出版日期:
2024-01-30

文章信息/Info

Title:
Cloning and function analysis of JcHDZ28 gene from Jatropha curcas L.
作者:
唐跃辉赵雨凡蒋心言张英颖王寒包欣欣范雨杰李彤
(周口师范学院生命科学与农学学院,河南周口466001)
Author(s):
TANG Yue-huiZHAO Yu-fanJIANG Xin-yanZHANG Ying-yingWANG HanBAO Xin-xinFAN Yu-jieLI Tong
(School of Life Sciences and Agronomy, Zhoukou Normal University, Zhoukou 466001, China)
关键词:
麻风树JcHDZ28HD-Zip盐胁迫转基因拟南芥
Keywords:
Jatropha curcas L.JcHDZ28HD-Zipsalt stresstransgenic Arabidopsis
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.004
文献标志码:
A
摘要:
HD-Zip家族基因与植物的生长和对环境胁迫的抗性密切相关,被认为是作物改良的关键因子。在本研究中,我们通过RT-PCR技术从麻风树中克隆了1个HD-Zip家族基因,命名为JcHDZ28。JcHDZ28基因包含1个 882 bp的开放阅读框,编码1个含有293个氨基酸的蛋白质。氨基酸序列分析结果表明,JcHDZ28含有高度保守的同源结构域和亮氨酸拉链(LZ)基序。表达模式分析结果表明,JcHDZ28基因在种子中的相对表达量最高,且盐胁迫下调该基因的表达。亚细胞定位分析结果表明,JcHDZ28基因编码1个核定位蛋白。过表达JcHDZ28基因增加了转基因拟南芥对盐胁迫的敏感性,且在盐胁迫条件下,转JcHDZ28基因拟南芥叶片脯氨酸含量显著低于野生型拟南芥,相对电导率显著高于野生型拟南芥,非生物胁迫相关基因在转JcHDZ28基因拟南芥中的表达也显著低于在野生型拟南芥中的表达。本研究结果可以为进一步阐明HD-Zip转录因子基因JcHDZ28在麻风树生长发育和响应非生物胁迫中的功能提供理论依据。
Abstract:
The genes of HD-Zip family are closely related to plant growth and resistance to environmental stress, and are considered to be key factors in crop improvement. In the study, we cloned a HD-Zip family gene from Jatropha curcas L. using RT-PCR technology, and named JcHDZ28. The JcHDZ28 gene contained an open reading frame of 882 bp, and encoded a protein with 293 amino acids. Amino acid sequence analysis showed that JcHDZ28 contained a highly conserved homologus domain and leucine zipper (LZ) motif. Expression profile analysis showed that the relative expression of JcHDZ28 gene was the highest in seeds, and salt stress inhibited the expression of this gene. Subcellular localization analysis showed that JcHDZ28 gene encoded a nuclear localization protein. Overexpression of JcHDZ28 gene increased the sensitivity of transgenic Arabidopsis to salt stress. Under salt stress, the proline content of transgenic plants was significantly lower than that of wild type, and the relative conductivity was significantly higher than that of wild type. The expression of abiotic stress-related genes in JcHDZ28 transgenic plants was also significantly lower than that in wild type. The results of this study can provide a theoretical basis for further elucidating the function of HD-Zip transcription factor gene JcHDZ28 in the growth, development and response to abiotic stress in Jatropha curcas L.

参考文献/References:

[1] LI Y X, YANG Z R, ZHANG Y Y, et al. The roles of HD-ZIP proteins in plant abiotic stress tolerance[J]. Frontiers in Plant Science,2022,13:1027071.
[2]沈丹,杨莉,胡威,等. 柑橘胁迫响应基因WRKY47的克隆与表达分析[J]. 江苏农业学报,2021,37(1):129-138.
[3]董舒超,凌嘉怡,赵丽萍,等. 转录因子调控番茄抗旱性研究进展[J]. 江苏农业科学,2023,51(9):9-16.
[4]JIAO M Y, ZHANG J, CHENG W W, et al. Identification of the AP2/ERF transcription factor family of Eleutherococcus senticosus and its expression correlation with drought stress[J]. 3 Biotech,2023,13(7):259.
[5]WANG H L, CHENG X, YIN D M, et al. Advances in the research on plant WRKY transcription factors responsive to external stresses[J]. Current Issues in Molecular Biology,2023,45(4):2861-2880.
[6]JOO H, BAEK W, LIM C W, et al. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses[J]. Current Genomics,2021,22(1):4-15.
[7]ARIEL F D, MANAVELLA P A, DEZAR C A, et al. The true story of the HD-Zip family[J]. Trends in Plant Science,2007,12(9):419-426.
[8]LI Z Q, ZHANG C, GUO Y H, et al. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.)[J]. BMC Genomics,2017,18:744.
[9]KOVALCHUK N, CHEW W, SORNARAJ P, et al. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley[J]. New Phytologist,2016,211(2):671-687.
[10]LUAN W J, SHEN A, JIN Z P, et al. Knockdown of OsHox33, a member of the class Ⅲ homeodomain-leucine zipper gene family, accelerates leaf senescence in rice[J]. Science China-Life Sciences,2013,56(12):1113-1123.
[11]HUR Y S, UM J H, KIM S, et al. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication[J]. New Phytologist,2015,205(1):316-328.
[12]YANG Y F, LUANG S, HARRIS J, et al. Overexpression of the class I homeodomain transcription factor TaHDZipI-5 increases drought and frost tolerance in transgenic wheat[J]. Plant Biotechnology Journal,2018,16(6):1227-1240.
[13]TANG Y H, WANG J, BAO X X, et al. Genome-wide identification and expression profile of HD-ZIP genes in physic nut and functional analysis of the JcHDZ16 gene in transgenic rice[J]. BMC Plant Biology,2019,19:298.
[14]BHATTACHARJEE A, KHURANA J, JAIN M. Characterization of rice homeobox genes, OsHOX22 and OsHOX24, and over-expression of OsHOX24 in transgenic Arabidopsis suggest their role in abiotic stress response[J]. Frontiers in Plant Science,2016,7:627.
[15]ZHAO Y, MA Q, JIN X L, et al. A novel maize homeodomain-leucine zipper (HD-Zip) I gene, Zmhdz10, positively regulates drought and salt tolerance in both rice and Arabidopsis[J]. Plant Cell and Physiology,2014,55(6):1142-1156.
[16]ABDULLA R, CHAN E S, RAVINDRA P. Biodiesel production from Jatropha curcas: a critical review[J]. Critical Reviews in Biotechnology,2011,31(1):53-64.
[17]LIU K Q, TANG Y H, TANG Y Y, et al. Ectopic expression of WRINKLED1 in rice improves lipid biosynthesis but retards plant growth and development[J]. PLoS One,2022,17(8):e0267684.
[18]WU Z, LIANG J H, WANG C P, et al. Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism[J]. Journal of Experimental Botany,2018,69(8):2005-2021.

相似文献/References:

[1]谢佳彤,孙丽丹,陈晓曼,等.麻风树JcWRI1基因克隆及功能分析[J].江苏农业学报,2022,38(02):334.[doi:doi:10.3969/j.issn.1000-4440.2022.02.006]
 XIE Jia-tong,SUN Li-dan,CHEN Xiao-man,et al.Cloning and functional analysis of JcWRI1 gene from physic nut[J].,2022,38(01):334.[doi:doi:10.3969/j.issn.1000-4440.2022.02.006]

备注/Memo

备注/Memo:
收稿日期:2023-09-02基金项目:河南省高等学校重点科研项目(24A180029);河南省周口师范学院大学生创新创业训练计划项目(202210478038、202210478040)作者简介:唐跃辉(1985-),男,河南许昌人,博士,副教授,主要从事植物基因克隆与功能研究。(E-mail)yhtang2005@163.com
更新日期/Last Update: 2024-03-17