参考文献/References:
[1]BI Y H, CHEN Q J, WANG Q L, et al. Genesis, evolution and prevalence of H5N6 avian influenza viruses in China[J]. Cell Host & Microbe,2016,20(6):810-821.
[2]BI Y H, LI J, LI S Q, et al. Dominant subtype switch in avian influenza viruses during 2016-2019 in China[J]. Nature Communications,2020,11(1):5909.
[3]PU J, WANG S G, YIN Y B, et al. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112:548-553.
[4]GUAN Y,SHORTRIDGE K F, KRAUSS S, et al. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? [J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(16):9363-9367.
[5]QI W, ZHOU X, SHI W, et al. Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China[J]. Eurosurveillance,2014,19(25):20841.
[6]LI F T, LIU J Y, YANG J Z, et al. H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: mechanism of avian influenza virus inter-species infection in humans[J]. PLoS Pathogens,2021,17(12):e1010098.
[7]LI C J, YU K Z, TIAN G B,et al. Evolution of H9N2 influenza viruses from domestic poultry in mainland China[J]. Virology Journal,2005,340(1):70-83.
[8]CHOI Y K, OZAKI H, WEBBY R J, et al.Continuing evolution of H9N2 influenza viruses in southeastern China[J]. Journal of Virology,2004,78(16):8609-8614.
[9]GUO Y J, KRAUSS S, SENNE D A, et al.Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia[J]. Virology Journal,2000,267(2):279-288.
[10]郭元吉,李建国,程小雯,等. 禽H9N2亚型流感病毒能感染人的发现[J]. 中华实验和临床病毒学杂志,1999,13(2):5-8.
[11]ADLHOCH C, FUSARO A, GONZALES J L, et al. Avian influenza overview September—December 2021[J]. EFSA Journal,2021,19(12):e07108.
[12]SUN Y P, PU J, FAN L H, et al. Evaluation of the protective effificacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens[J]. Veterinary Microbiology,2012,156(1/2):193-199.
[13]ZHONG L, WANG X Q, LI Q H, et al. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens[J]. Journal of Virology,2014,88(17):9568-9578.
[14]DONG J Z, ZHOU Y, LIU L T, et al. Status and challenges for vaccination against avian H9N2 influenza virus in China[J]. Life-basel,2022,12(9):1326.
[15]WU P P, LU J H, ZHANG X H, et al. Single dose of consensus hemagglutinin-based virus-like particles vaccine protects chickens against divergent H5 subtype influenza viruses[J]. Frontiers in Immunology,2017,8:1649.
[16]张雪花,陆吉虎,华涛,等. 通用型 H5 亚型禽流感病毒亚单位疫苗抗原表达和免疫效力研究[J]. 病毒学报,2019,35(6):864-872.
[17]BULLARD B L, COEDER B N, DEBEAUCHAMP J, et al. Epigraph hemagglutinin vaccine induces broad cross-reactive immunity against swine H3 influenza virus[J]. Nature Communication,2021,12(1):1203.
[18]BULLARD B L, DEBEAUCHAMP J, PEKAREK M J, et al. An epitope-optimized human H3N2 influenza vaccine induces broadLY protective immunity in mice and ferrets[J]. NPJ Vaccines,2022,7(1):65.
[19]李丽,唐国毅,冯贺龙,等. 基于马赛克HA序列的H9亚型禽流感灭活疫苗的免疫效力分析[J]. 畜牧兽医学报,2021,52(12):3569-3577.
[20]BUCKLAND B, BOULANGER R, FINO M, et al. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process[J]. Vaccines,2014,32(42):5496-5502.
[21]MANNINI I, TROMBETTA M, LAZZERI G, et al. Egg-independent influenza vaccines and vaccine candidates[J]. Vaccines(Basel),2017,5(3):18.