[1]宿子文,蔡志翔,孙朦,等.植物中绿原酸生物合成研究进展[J].江苏农业学报,2023,(06):1414-1426.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
 SU Zi-wen,CAI Zhi-xiang,SUN Meng,et al.Research progress on biosynthesis of chlorogenic acid in plants[J].,2023,(06):1414-1426.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
点击复制

植物中绿原酸生物合成研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
1414-1426
栏目:
综述
出版日期:
2023-09-30

文章信息/Info

Title:
Research progress on biosynthesis of chlorogenic acid in plants
作者:
宿子文12蔡志翔1孙朦1沈志军1马瑞娟1俞明亮12严娟1
(1.江苏省农业科学院果树研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.南京农业大学园艺学院,江苏南京210095)
Author(s):
SU Zi-wen12CAI Zhi-xiang1SUN Meng1SHEN Zhi-jun1MA Rui-juan1YU Ming-liang12YAN Juan1
(1.Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;2.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
绿原酸生物活性生物合成
Keywords:
chlorogenic acidbiological activitiesbiosynthesis
分类号:
Q945
DOI:
doi:10.3969/j.issn.1000-4440.2023.06.018
文献标志码:
A
摘要:
绿原酸是植物体内重要的有机酚酸类物质,可以作为营养保健品和食品添加剂,具有多种功能特性。在植物中,绿原酸通常是以各种同分异构体和衍生物的形式存在。目前,已有3条主要的绿原酸合成途经被证实,其生物合成不仅受结构基因(PAL、C4H、4CL、C3H、HCT、HQT等)和转录因子(MYB、WRKY、bHLH等)的表达调控,还受多种非生物因素(激素、光照、温度、水分、无机盐等)的影响。本文从绿原酸的生物活性、种类、生物合成以及影响因素这几个方面进行了阐述,为植物中绿原酸的生物合成研究和开发利用提供基础。
Abstract:
Chlorogenic acid (CGA) is an important organic phenolic acid in plants, which has multifunctional properties as nutraceutical supplement and food additive. In plants, chlorogenic acids are usually present in structural forms such as various derivatives and isoforms. At present, there were three major routes for chlorogenic acid synthesis. Its biosynthesis was not only regulated by the structural genes (PAL, C4H, 4CL, C3H, HCT, HQT) and transcription factors (MYB, WRKY, bHLH), but also affected by a variety of abiotic factors (hormones, light, temperature, water, inorganic salts). Therefore, we summarized the biological activity, type, biosynthesis and influencing factors of chlorogenic acid in this paper, aiming to provide a basis for the biosynthesis research and utilization of chlorogenic acid in plants.

参考文献/References:

[1]COMINO C, HEHN A, MOGLIA A, et al. The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway[J].BMC Plant Biology,2009, 9(1):30.
[2]NIGGEWEG R, MICHAEL A J, MARTIN C. Engineering plants with increased levels of the antioxidant chlorogenic acid[J].Nature Biotechnology,2004,22(6):746-754.
[3]SONNANTE G, DAMORE R, BLANCO E, et al. Novel hydroxycinnamoyl-coenzyme a quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid[J].Plant Physiology,2010,153(3):1224-1238.
[4]LI Y Q, KONG D X, BAI M, et al. Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers[J].Horticulture Research,2019,6(1):934-947.
[5]LIU Q, YAO L X, XU Y C, et al. In vitro evaluation of hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase expression and regulation in Taraxacum antungense in relation to 5-caffeoylquinic acid production[J].Phytochemistry,2019,162:148-156.
[6]LIU Q, LI L, CHENG H T, et al. The basic helix-loop-helix transcription factor TabHLH1 increases chlorogenic acid and luteolin biosynthesis in Taraxacum antungense Kitag[J].Horticulture Research,2021,8(1):14.
[7]ANDREOTTI C, RAVAGLIA D, RAGAINI A, et al. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation[J].Annals of Applied Biology,2008,153(1):11-23.
[8]RODRIGUEZ-MATEOS A, CIFUENTES-GOMEZ T, TABATABAEE S, et al. Procyanidin,anthocyanin,and chlorogenic acid contents of highbush and lowbush blueberries[J]. Journal of Agricultural and Food Chemistry,2012,60(23):5772-5778.
[9]HE J G, CHENG Y D, GUAN J F, et al. Changes of chlorogenic acid content and its synthesis-associated genes expression in Xuehua pear fruit during development[J].Journal of Integrative Agriculture,2017,16(2):471-477.
[10]CHEN X D, CAI W J, XIA J, et al. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry[J].Journal of Agricultural and Food Chemistry,2020,68(44):12485-12492.
[11]LIAO L, ZHANG W, ZHANG B, et al. Evaluation of chlorogenic acid accumulation in cultivated and wild apples[J].Journal of Food Composition and Analysis,2021,104:104156.
[12]JAISWAL R, MULLER H, MULLER A, et al. Identification and characterization of chlorogenic acids,chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn[J].Phytochemistry,2014,108:252-263.
[13]PANDEY A, MISRA P, BHAMBHANI S, et al. Expression of Arabidopsis MYB transcription factor,AtMYB111,in tobacco requires light to modulate flavonol content[J].Scientific Reports,2014,4:5018.
[14]SANTANA-GALVEZ J, CISNEROS-ZEVALLOS L, JACOBO-VELAZQUEZ D A. Chlorogenic acid:Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome[J].Molecules,2017,22(3):2-21.
[15]NAVEED M, HEJAZI V, ABBAS M, et al. Chlorogenic acid (CGA):A pharmacological review and call for further research[J].Biomedicine & Pharmacotherapy,2018,97:67-74.
[16]HAMMERSCHMIDT R. Chlorogenic acid:A versatile defense compound[J].Physiological and Molecular Plant Pathology,2014,88:3-4.
[17]JIAO W X, LI X X, WANG X M, et al. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway[J].Food Chemistry,2018,260:274-282.
[18]MARTINEZ G, REGENTE M, JACOBI S, et al. Chlorogenic acid is a fungicide active against phytopathogenic fungi[J].Pesticide Biochemistry and Physiology,2017,140:30-35.
[19]JAISWAL R, KUHNERT N. Identification and characterization of two new derivatives of chlorogenic acids in Arnica (Arnica montana L.) flowers by high-performance liquid chromatography/tandem mass spectrometry[J].Journal of Agricultural and Food Chemistry,2011,59(8):4033-4039.
[20]HOFFMANN L, MAURY S, MARTZ F, et al. Purification,cloning,and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism[J].Journal of Biological Chemistry,2003,278(1):95-103.
[21]HOFFMANN L, BESSEAU S, GEofFROY P, et al. Silencing of hydroxycinnamoy-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis[J].Plant Cell,2004,16(6):1446-1465.
[22]PAYYAVULA R S, SHAKYA R, SENGODA V G, et al. Synthesis and regulation of chlorogenic acid in potato:Rerouting phenylpropanoid flux in HQT-silenced lines[J].Plant Biotechnology Journal,2015,13(4):551-564.
[23]SU Z W, JIA H R, SUN M, et al. Integrative analysis of the metabolome and transcriptome reveals the molecular mechanism of chlorogenic acid synthesis in peach fruit[J].Frontiers in Nutrition,2022,9:961626.
[24]ZHAO L Q, SHAN C M, SHAN T Y, et al. Probing the transcriptome of Boehmeria nivea reveals candidate genes associated with the biosynthesis of chlorogenic acid[J].Gene,2022,833:146579.
[25]WEN H, WANG W Q, JIANG X, et al. Transcriptome analysis to identify candidate genes related to chlorogenic acid biosynthesis during development of Korla fragrant pear in Xinjiang[J].Food Science and Human Wellness,2022,11(4):854-864.
[26]HOWLES P A, SEWALT V J H, PAIVA N L, et al. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis[J].Plant Physiology,1996,112(4):1617-1624.
[27]LEPELLEY M, MAHESH V, MCCARTHY J, et al. Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae)[J].Planta, 2012, 236(1):313-326.
[28]YU Y, WANG Y J, YU Y, et al. Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato[J].Crop Journal, 2021, 9(1):204-215.
[29]YUAN Y, WANG Z Y, JIANG C, et al. Exploiting genes and functional diversity of chlorogenic acid and luteolin biosyntheses in Lonicera japonica and their substitutes[J].Gene, 2014, 534(2):408-416.
[30]QI X W, YU X, XU D H, et al. Identification and analysis of CYP450 genes from transcriptome of Lonicera japonica and expression analysis of chlorogenic acid biosynthesis related CYP450s[J].Peerj, 2017,5:e3781.
[31]YAN J, SU Z W, GUO S L, et al. Chlorogenic acid accumulation and related gene expression in peach fruit[J].Horticulture Environment and Biotechnology, 2022, 63(3):403-411.
[32]PU G B, WANG P, ZHOU B Q, et al. Cloning and characterization of Lonicera japonica p-coumaroyl ester 3-hydroxylase which is involved in the biosynthesis of chlorogenic acid[J].Bioscience Biotechnology and Biochemistry, 2013, 77(7):1403-1409.
[33]蒋向辉. 金银花绿原酸合成途径关键酶基因克隆与功能分析[D]. 长沙:湖南大学, 2013.
[34]MOGLIA A, ACQUADRO A, ELJOUNAIDI K, et al. Genome-wide identification of BAHD acyltransferases and in vivo characterization of HQT-like enzymes involved in caffeoylquinic acid synthesis in globe artichoke[J].Frontiers in Plant Science, 2016, 7(30):1424.
[35]ZHANG J R, WU M L, LI W D, et al. Regulation of chlorogenic acid biosynthesis by hydroxycinnamoyl CoA quinate hydroxycinnamoyl transferase in Lonicera japonica[J].Plant Physiology and Biochemistry, 2017, 121:74-79.
[36]VILLEGAS R J A, KOJIMA M. Purification and characterization of hydroxycinnamoyl D-glucose quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam[J].Journal of Biological Chemistry, 1986, 261(19):8729-8733.
[37]ABDULRAZZAK N, POLLET B, EHLTING J, et al. A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth[J].Plant Physiology, 2006, 141(4):1708.
[38]REDDY M S S, CHEN F, SHADLE G, et al. Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.)[J].Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(46):16573-16578.
[39]MOTTIAR Y, VANHOLME R, BOERJAN W, et al. Designer lignins:harnessing the plasticity of lignification[J].Current Opinion In Biotechnology, 2016, 37:190-200.
[40]ALBERSTEIN M, EISENSTEIN M, ABELIOVICH H. Removing allosteric feedback inhibition of tomato 4-coumarate:CoA ligase by directed evolution[J].Plant Journal, 2012, 69(1):57-69.
[41]GUI J S, SHEN J H, LI L G. Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice[J].Plant Physiology, 2011, 157(2):574-586.
[42]LI Y, CHEN M, WANG S L, et al. AtMYB11 regulates caffeoylquinic acid and flavonol synthesis in tomato and tobacco[J].Plant Cell Tissue and Organ Culture, 2015, 122(2):309-319.
[43]MOGLIA A, COMINO C, PORTIS E, et al. Isolation and mapping of a C3′H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress[J].Plant Cell Reports, 2009, 28(6):963-974.
[44]FU R, ZHANG P Y, JIN G, et al. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower[J].Nature Communications, 2021, 12(1):1563.
[45]MUDAU S P, STEENKAMP P A, PIATER L A, et al. Metabolomics-guided investigations of unintended effects of the expression of the hydroxycinnamoyl quinate hydroxycinnamoyltransferase (hqt1) gene from Cynara cardunculus var. scolymus in Nicotiana tabacum cell cultures[J].Plant Physiology and Biochemistry, 2018, 127:287-298.
[46]GALLEGO-GIRALDO L, ESCAMILLA-TREVINO L, JACKSON L A, et al. Salicylic acid mediates the reduced growth of lignin down-regulated plants[J].Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(51):20814-20819.
[47 MITA S, NAGAI Y, ASAI T. Isolation of cDNA clones corresponding to genes differentially expressed in pericarp of mume (Prunus mume) in response to ripening, ethylene and wounding signals[J].Physiologia Plantarum, 2006, 128(3):531-545.
[48]SHI R, SUN Y H, LI Q Z, et al. Towards a systems approach for lignin biosynthesis in Populus trichocarpa:Transcript abundance and specificity of the monolignol biosynthetic genes[J].Plant and Cell Physiology, 2010, 51(1):144-163.
[49]VARBANOVA M, PORTER K, LU F, et al. Molecular and biochemical basis for stress-induced accumulation of free and bound p-Coumaraldehyde in cucumber[J].Plant Physiology, 2011, 157(3):1056-1066.
[50]SHI Y N, LI B J, SU G Q, et al. Transcriptional regulation of fleshy fruit texture[J].Journal of Integrative Plant Biology, 2022, 64 (9):1649-1672.
[51]WAKO T, KIMURA S, CHIKAGAWA Y, et al. Characterization of MYB proteins acting as transcriptional regulatory factors for carrot phenylalanine ammonia-lyase gene (DcPAL3)[J].Plant Biotechnology, 2010, 27(2):131-139.
[52]LUO J, BUTELLI E, HILL L, et al. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato:expression in fruit results in very high levels of both types of polyphenol[J].Plant Journal, 2008, 56(2):316-326.
[53]李洋. 转录因子AtMYB11和AtMYB12在茄科作物上调控多酚类物质合成的研究[D]. 泰安:山东农业大学, 2016.
[54]TUAN P A, KWON D Y, LEE S, et al. Enhancement of chlorogenic acid production in hairy roots of platycodon grandiflorum by over-expression of an Arabidopsis thaliana transcription factor AtPAP1[J].International Journal of Molecular Sciences, 2014, 15(8):14743-14752.
[55]王中,赵利杰,刘萍萍,等. 烟草NtMYB59基因克隆及过表达对绿原酸含量的影响[J].烟草科技, 2021, 54(5):1-7.
[56]杨琴,罗倩,孙光军,等. NtMYB4a基因对烟草多酚类物质合成的影响[J].分子植物育种, 2021, 19(8):2588-2595.
[57]LIU C Y, LONG J M, ZHU K J, et al. Characterization of a citrus R2R3-MYB transcription factor that regulates the flavonol and hydroxycinnamic acid biosynthesis[J].Scientific Reports, 2016, 6(1):25352.
[58]TANG N, CAO Z Y, YANG C, et al. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides[J].Plant Science, 2021, 308:110924.
[59]STRACKE R, ISHIHARA H, BARSCH G H A, et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the arabidopsis thaliana seedling[J].Plant Journal, 2007, 50(4):660-677.
[60]ZHANG S C, MA P D, YANG D F, et al. Cloning and characterization of a putative R2R3 MYB transcriptional repressor of the rosmarinic acid biosynthetic pathway from Salvia miltiorrhiza[J].PLoS One, 2013, 8(9):e73259.
[61]ZHANG J, YANG Y, ZHENG K, et al. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus[J].New Phytologist, 2018, 220(2):502-516.
[62]LIU Q, ZHOU W, RUAN Q Y, et al. Overexpression of TaWRKY14 transcription factor enhances accumulation of chlorogenic acid in Taraxacum antungense Kitag and increases its resistance to powdery mildew[J].Plant Cell Tissue and Organ Culture, 2020, 143(3):665-679.
[63]WANG Z, WANG S B, LIU P P, et al. Molecular cloning and functional characterization of NtWRKY41a in the biosynthesis of phenylpropanoids in Nicotiana tabacum[J].Plant Science, 2022, 315 :111154.
[64]WANG Z, MA L X, LIU P P, et al. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco[J].Plant Science, 2023, 326:111522.
[65]SUN M H, SHI M, WANG Y, et al. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza[J].Journal of Experimental Botany, 2019, 70(1):243-254.
[66]禹阳,边小峰,贾赵东,等. 甘薯ERF转录因子IbERF4在促进植物绿原酸类物质合成中的用途:CN114395566B[P]. 2022-05-24.
[67]LIN S C, WANG Y, SHI M, et al. SmbHLH60 and SmMYC2 antagonistically regulate phenolic acids and anthocyanins biosynthesis in Salvia miltiorrhiza[J].Journal of Advanced Research, 2022, 42:205-219.
[68]ZHA L P, LIU S, LIU J, et al. DNA methylation influences chlorogenic acid biosynthesis in Lonicera japonica by mediating LjbZIP8 to regulate phenylalanine ammonia-lyase 2 Expression[J].Frontiers In Plant Science, 2017, 8:1178.
[69]NTINI C. 鉴定咖啡中决定咖啡因和绿原酸积累的MADS-Box基因[D]. 武汉:中国科学院大学(中国科学院武汉植物园), 2021.
[70]DING P T, DING Y L. Stories of salicylic acid:A plant defense hormone[J].Trends In Plant Science, 2020, 25(6):549-565.
[71]MORENO F D, MONAGAS M, BLANCH G, et al. Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment[J].European Food Research and Technology, 2010, 230(6):989-999.
[72]SHAFIQ M, SINGH Z, KHAN A S. Pre-harvest spray application of methyl jasmonate improves red blush and flavonoid content in ‘Cripps Pink’ apple[J].Journal of Horticultural Science & Biotechnology, 2011, 86(4):422-430.
[73]RUIZ-GARCIA Y, ROMERO-CASCALES I, GIL-MUNOZ R, et al. Improving grape phenolic content and wine chromatic characteristics through the use of two different elicitors:methyl jasmonate versus benzothiadiazole[J].Journal of Agricultural and Food Chemistry, 2012, 60(5):1283-1290.
[74]邹凯,刘泽波,陈继光,等. 甜叶菊毛状根的诱导培养及茉莉酸甲酯对其绿原酸类物质积累的影响[J].食品科学, 2017, 38(12):89-95.
[75]YOUSEFIAN S, LOHRASEBI T, FARHADPOUR M, et al. Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures[J].Plant Cell Tissue and Organ Culture, 2020, 142(2):285-297.
[76]YU Y, ZHANG Q, LIU S, et al. Effects of exogenous phytohormones on chlorogenic acid accumulation and pathway-associated gene expressions in sweetpotato stem tips[J].Plant Physiology and Biochemistry, 2021, 164:21-26.
[77]SUN M, SHI M, WANG Y, et al. The biosynthesis of phenolic acids is positively regulated by the JA-responsive transcription factor ERF115 in Salvia miltiorrhiza[J].Journal of Experimental Botany,2019, 70 (1):243-254.
[78]CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J].Journal of Integrative Plant Biology, 2020, 62(1):25-54.
[79]LIANG Z S, MA Y N, XU T, et al. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots[J].PLoS One, 2013, 8(9):e72806.
[80]JIA Y Y, BAI Z Q, PEI T L, et al. The protein kinase SmSnRK2.6 positively regulates phenolic acid biosynthesis in Salvia miltiorrhiza by interacting with SmAREB1[J].Frontiers In Plant Science, 2017, 8:1384.
[81]YU Y, ZHANG Q, LIU S, et al. Effects of exogenous phytohormones on chlorogenic acid accumulation and pathway-associated gene expressions in sweetpotato stem tips[J].Plant Physiology and Biochemistry, 2021, 164:21-26.
[82]PARK C H, YEO H J, PARK Y J, et al. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts[J].Molecules, 2017, 22(3):374.
[83]ABBASI B H, STILES A R, SAXENA P K, et al. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots[J].Applied Biochemistry and Biotechnology, 2012, 168(7):2057-2066.
[84]万雪芹,叶燕萍,梅利民,等. GA3和BR对金银花花期及绿原酸含量的影响[J].西南农业学报, 2009, 22(1):156-158.
[85]李建新,张晓宇,艾志录,等. 1-甲基环丙烯对花牛苹果中苹果多酚和绿原酸含量的影响[J].河南农业大学学报, 2017, 51(6):797-800.
[86]TINYANE P P, SIVAKUMAR D, SOUNDY P. Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars[J].Scientia Horticulturae, 2013, 161:340-349.
[87]GRACE S C, LOGAN B A, ADAMS W W. Seasonal differences in foliar content of chlorogenic acid, a phenylpropanoid antioxidant, in Mahonia repens[J].Plant Cell and Environment, 1998, 21(5):513-521.
[88]郑明,周冀衡,黄勇. 光照强度对烤烟烟苗生长和代谢产物含量的影响[J].作物研究, 2009, 23(3):181-183.
[89]HUDINA M, STAMPAR F, ORAZEM P, et al. Phenolic compounds profile, carbohydrates and external fruit quality of the ‘Concorde’ pear (Pyrus communis L.) after bagging[J].Canadian Journal of Plant Science, 2012, 92(1):67-75.
[90]ZHANG D, SUN W, SHI Y H, et al. Red and blue light promote the accumulation of artemisinin in Artemisia annua L.[J].Molecules, 2018, 23(6):1329.
[91]SEO J M, ARASU M V, KIM Y B, et al. Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts[J].Food Chemistry, 2015, 177:204-213.
[92]SHIMOMURA M, YOSHIDA H, FUJIUCHI N, et al. Continuous blue lighting and elevated carbon dioxide concentration rapidly increase chlorogenic acid content in young lettuce plants[J].Scientia Horticulturae, 2020, 272:109550.
[93]CHEN X, CAI W, XIA J, et al. Metabolomic and transcriptomic analyses reveal that blue light promotes chlorogenic acid synthesis in strawberry[J].Journal of Agricultural and Food Chemistry, 2020, 68(44):12485-12492.
[94]GONZALEZ-AGUILAR G A, ZAVALETA-GATICA R, TIZNADO-HERNandEZ M E. Improving postharvest quality of mango ‘Haden’ by UV-C treatment[J].Postharvest Biology and Technology, 2007, 45(1):108-116.
[95]WANG C Y, CHEN C T, WANG S Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C[J].Food Chemistry, 2009, 117(3):426-431.
[96]SEVERO J, DE OLIVEIRA I R, TIECHER A, et al. Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry[J].LWT-Food Science and Technology, 2015, 64(2):685-692.
[97]PINTO E P, PERIN E C, SCHOTT I B, et al. The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv. ‘Concord’)[J].Postharvest Biology and Technology, 2016, 120:84-91.
[98]BRAVO S, GARCIA-ALONSO J, MARTIN-POZUELO G, et al. The influence of post-harvest UV-C hormesis on lycopene, beta-carotene, and phenolic content and antioxidant activity of breaker tomatoes[J].Food Research International, 2012, 49(1):296-302.
[99]LIU Z B, CHEN J G, YIN Z P, et al. Methyl jasmonate and salicylic acid elicitation increase content and yield of chlorogenic acid and its derivatives in Gardenia jasminoides cell suspension cultures[J].Plant Cell Tissue and Organ Culture, 2018, 134(1):79-93.
[100]PADDA M S, PICHA D H. Antioxidant activity and phenolic composition in ‘Beauregard’ sweetpotato are affected by root size and leaf age[J].Journal of the American Society for Horticultural Science, 2007, 132(4):447-451.
[101]JOET T, SALMONA J, LAFFARGUE A, et al. Use of the growing environment as a source of variation to identify the quantitative trait transcripts and modules of co-expressed genes that determine chlorogenic acid accumulation[J].Plant Cell and Environment, 2010, 33(7):1220-1233.
[102]VITHANA M D K, SINGH Z, JOHNSON S K. Regulation of the levels of health promoting compounds:lupeol, mangiferin and phenolic acids in the pulp and peel of mango fruit:a review[J].Journal of the Science of Food and Agriculture, 2019, 99(8):3740-3751.
[103]牛俊萍. 高温对‘红美丽’李果实花色苷代谢的影响[D]. 咸阳:西北农林科技大学, 2015.
[104]张萍, 蒲高斌. 气候因子对金银花绿原酸含量影响的研究[J].山东农业科学, 2015, 47(9):77-79.
[105]辛邵南. 滩涂适生菊芋绿原酸合成途径相关基因响应高温与盐胁迫的机理分析[D]. 南京:南京农业大学, 2017.
[106]任园宇,魏东伟,孙武勇,等. HPLC-MS法测定高温胁迫前后玉米幼苗6种酚酸类化合物含量[J].化学研究与应用, 2020, 32(5):795-802.
[107]杨云富,郭巧生,张守栋,等. 水分胁迫对药用白菊花抗干旱生理及药材内在品质的影响[J].中国中药杂志, 2009, 34(4):486-487.
[108]高源远,于腾辉,吴建国,等. 水涝胁迫对烟草理化特性和几种次生代谢产物的影响[J].南昌大学学报(理科版), 2018, 42(5):445-451.
[109]吴栋,于腾辉,李享,等. 中性解吸-电喷雾萃取电离质谱直接分析水涝胁迫下烟草的代谢产物[J].分析化学, 2020, 48(1):121-128.
[110]KLEINWACHTER M, SELMAR D. New insights explain that drought stress enhances the quality of spice and medicinal plants:potential applications[J].Agronomy for Sustainable Development, 2015, 35(1):121-131.
[111]SHAO Y H, GAO J L, WU X W, et al. Effect of salt treatment on growth, isoenzymes and metabolites of andrographis paniculata (Burm. f.) Nees[J].Acta Physiologiae Plant, 2015, 37:35.
[112]ZHAO G M, LI S H, SUN X, et al. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress[J].Scientific Reports, 2015, 5:12696.
[113]YAN K, ZHAO S J, BIAN L X, et al. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress[J].Plant Physiology and Biochemistry, 2017, 112:326-334.
[114]曹瑞致. 不同生长调节剂和微量元素处理对杜仲生长及次生代谢物含量的影响[D]. 咸阳:西北农林科技大学, 2018.
[115]李丽. 氮钼镁营养和有机酸对药用菊花生长发育及品质影响研究[D]. 南京:南京农业大学, 2016.
[116]徐扬,石子为,刘引,等. 施用硼肥对菊花生长及品质的影响[J].中国现代中药, 2020, 22(2):255-259,270.
[117]蒋向辉,戴贵东,王翔. 微量元素对金银花中绿原酸形成与积累的影响[J].植物生理学报, 2017, 53(6):1015-1022.
[118]蒋向辉,佘朝文,苑静,等. 微量元素对金银花绿原酸合成关键酶基因LjHCT和LjC3H1表达的影响研究[J].植物科学学报, 2017, 35(2):260-266.

相似文献/References:

[1]王红春,李小艳,孙宇,等.新型除草剂二氯喹啉草酮的除草活性及对水稻的安全性评价[J].江苏农业学报,2016,(01):67.[doi:10.3969/j.issn.1000-4440.2016.01.010 ]
 WANG Hong-chun,LI Xiao-yan,SUN Yu,et al.Herbicidal activity of quintrione and its safety to rice[J].,2016,(06):67.[doi:10.3969/j.issn.1000-4440.2016.01.010 ]
[2]曹森,王瑞,赵成飞,等.采前喷施哈茨木霉菌对采后蓝莓贮藏品质及生物活性的影响[J].江苏农业学报,2017,(02):424.[doi:doi:10.3969/j.issn.1000-4440.2017.02.029]
 CAO Sen,WANG Rui,ZHAO Cheng-fei,et al.Effects of Trichoderma harzianum preharvest application on postharvest storage quality and biological activity of blueberry[J].,2017,(06):424.[doi:doi:10.3969/j.issn.1000-4440.2017.02.029]
[3]苏萌萌,孙芝兰,刘芳,等.绿原酸对鸡肉腐败菌的抑菌机理[J].江苏农业学报,2018,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2018.06.026]
 SU Meng-meng,SUN Zhi-lan,LIU Fang,et al.Antimicrobial mechanism of chlorogenic acid against chicken spoilage bacteria[J].,2018,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2018.06.026]
[4]陈灿辉,江文韬,林彤,等.竹笋多糖的提取、结构鉴定与生理功效研究进展[J].江苏农业学报,2019,(06):1513.[doi:doi:10.3969/j.issn.1000-4440.2019.06.034]
 CHEN Can-hui,JIANG Wen-tao,LIN Tong,et al.Progress in extraction, structural characterization and biological activities of bamboo shoot polysaccharide[J].,2019,(06):1513.[doi:doi:10.3969/j.issn.1000-4440.2019.06.034]
[5]王云富,崔彩芳,孙兆岳,等.花旗松素的提取、检测及功能研究进展[J].江苏农业学报,2024,(02):376.[doi:doi:10.3969/j.issn.1000-4440.2024.02.020]
 WANG Yun-fu,CUI Cai-fang,SUN Zhao-yue,et al.Research progress on extraction, detection and function of taxifolin[J].,2024,(06):376.[doi:doi:10.3969/j.issn.1000-4440.2024.02.020]
[6]赵蕾,李辉,覃水平,等.猪TGF-βⅡ型受体胞外域的表达及生物活性验证[J].江苏农业学报,2024,(07):1268.[doi:doi:10.3969/j.issn.1000-4440.2024.07.013]
 ZHAO Lei,LI Hui,QIN Shuiping,et al.Expression of porcine TGF-β type Ⅱ receptor in extracellular domain and validation of its biological activity[J].,2024,(06):1268.[doi:doi:10.3969/j.issn.1000-4440.2024.07.013]

备注/Memo

备注/Memo:
收稿日期:2022-10-10基金项目:江苏省自然科学基金项目(BK20200278);现代农业产业技术体系建设项目(CARS-30)作者简介:宿子文(1995-),女,山东泰安人,博士研究生,研究方向为桃育种和果实品质分子机理研究。(E-mail)2020204007@stu.njau.edu.cn通讯作者:严娟,(E-mail)yanjuanjaas@aliyun.com
更新日期/Last Update: 2023-11-17