[1]林静,罗莲,杨爽,等.产柚苷酶菌株改良、性质及其在柑橘酒中的应用研究进展[J].江苏农业学报,2023,(06):1427-1436.[doi:doi:10.3969/j.issn.1000-4440.2023.06.019]
 LIN Jing,LUO Lian,YANG Shuang,et al.Research progress on the strain improvement, properties of naringinase and its application in citrus wine[J].,2023,(06):1427-1436.[doi:doi:10.3969/j.issn.1000-4440.2023.06.019]
点击复制

产柚苷酶菌株改良、性质及其在柑橘酒中的应用研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年06期
页码:
1427-1436
栏目:
综述
出版日期:
2023-09-30

文章信息/Info

Title:
Research progress on the strain improvement, properties of naringinase and its application in citrus wine
作者:
林静罗莲杨爽李萍张志清陈安均刘兴艳
(四川农业大学食品学院,四川雅安611130)
Author(s):
LIN JingLUO LianYANG ShuangLI PingZHANG Zhi-qingCHEN An-junLIU Xing-yan
(College of Food Science, Sichuan Agricultural University, Yaan 611130, China)
关键词:
柚苷酶酶学性质柑橘酒柚皮苷脱苦增香
Keywords:
naringinaseenzymatic propertiescitrus winenaringindebitteringflavor enhancement
分类号:
TS255.46
DOI:
doi:10.3969/j.issn.1000-4440.2023.06.019
文献标志码:
A
摘要:
柚苷酶是由α-L-鼠李糖苷酶及β-D-葡萄糖苷酶组成的复合酶,不同来源的柚苷酶在酶学性质和结构特性上有一定的差异,目前柚苷酶的主要来源是真菌,真菌来源的柚苷酶最适温度为50~60 ℃,最适pH值范围为4.0~6.0,但柚苷酶的整体结构、两种单组分酶的比例构成,至今尚无详尽的报道。柚苷酶作用于柑橘酒时,不仅能脱苦,还能提高柑橘酒的香气,其在提高柑橘酒的品质方面具有潜在的应用价值。本文对柚苷酶的酶学特性、结构特性、柑橘酒中的苦味物质及柚苷酶在柑橘酒中的应用等进行了综述,以期为柚苷酶的进一步研究和应用提供理论支持。
Abstract:
Naringinase is a complex enzyme composed of α-L-rhamnosidase and β-D-glucosidase. There are some differences in the enzymatic properties and structural properties of naringinase from different sources. At present, the main source of naringinase is fungi. The optimal temperature range of naringinase from fungi is 50-60 ℃. The optimal pH range of naringinase from fungi is 4.0-6.0. However, the structure of naringinase and the proportion of two single-component enzymes have not been reported in detail. When naringinase is applied to citrus wine, it can not only remove bitterness, but also improve the aroma of citrus wine. It has potential application value in improving the quality of citrus wine. In order to provide theoretical support for further research and application of naringinase, the enzymatic and structural properties of naringinase, the bitter substances in citrus wine and the application of naringinase in citrus wine were reviewed in this paper.

参考文献/References:

[1]AWAD G E A, ABD E A A A, SHEHATA A N, et al. Covalent immobilization of microbial naringinase using novel thermally stable biopolymer for hydrolysis of naringin[J].3 Biotech, 2016, 6(1):14-24.
[2]张楠,孙西同,李佥,等. 黑曲霉固态发酵生产柚苷酶的工艺研究[J]. 工业微生物, 2020, 50(5):21-26.
[3]张晨,贾蒙,马亚琴. β-葡萄糖苷酶活性稳定化技术在柑橘产品增香中的应用[J]. 食品与发酵工业, 2021, 47(11):303-309.
[4]RIBEIRO M H. Naringinases: occurrence, characteristics, and applications[J]. Applied Microbiology & Biotechnology, 2011, 90(6):1883-1895.
[5]鲁浪波,单杨,夏金兰. 高产柚苷酶菌株的筛选及鉴定[J]. 中国食品学报, 2015, 15(5):206-212.
[6]刘艺文. 产柚苷酶菌株的筛选及其对柑橘汁脱苦的研究[D]. 长沙: 湖南农业大学, 2013.
[7]XIA X K, ZHANG Y E, LEI S J, et al. Optimization of process parameters for naringinase production by Aspergillus tubingensis UA13 and pilot scale-up study[J]. Preparative Biochemistry & Biotechnology, 2022, 52(2):226-233.
[8]石峰,李佥,田晶,等. 响应面法优化超声强化黑曲霉发酵产柚苷酶的工艺[J]. 大连工业大学学报, 2021, 40(2):92-97.
[9]ZHU Y P, JIA H Y, XI M L, et al. Purification and characterization of a naringinase from a newly isolated strain of Bacillus amyloliquefaciens 11568 suitable for the transformation of flavonoids[J]. Food Chemistry, 2017, 214:39-46.
[10]SHANMUGAPRAKASH M, VINOTHKUMAR V, RAGUPATHY J, et al. Biochemical characterization of three phase partitioned naringinase from Aspergillus brasiliensis MTCC 1344[J]. International Journal of Biological Macromolecules: Structure, Function and Interactions, 2015, 80:418-423.
[11]CHEN Y L, NI H, CHEN F, et al. Purification and characterization of a naringinase from Aspergillus aculeatus JMUdb058[J]. Journal of Agricultural and Food Chemistry, 2013, 61(4):931-938.
[12]王圣开,董全. 国内外果酒生产工艺的研究进展[J]. 中国食物与营养, 2008(1):37-39.
[13]马胤鹏,曾竟蓝,曾璐,等. 柑橘酒中苦味物质及其脱苦技术的研究进展[J]. 农产品加工, 2017(18): 58-61.
[14]李睿晓. 柚子酒的微生物脱苦技术研究[D]. 重庆: 西南大学, 2010.
[15]毕静莹. 柑橘酒苦味物质及其控制技术研究[D]. 杨凌: 西北农林科技大学, 2019.
[16]HALL D H. A new enzyme of the glycosidase type[J]. Nature, 1938, 142(3586): 150.
[17]TING S. Correction-enzymic hydrolysis of naringin in grapefruit[J]. Journal of Agricultural and Food Chemistry, 1958, 6(8): 592.
[18]李坤峰. 热激促进黑曲霉发酵产柚苷酶的工艺与机制研究[D]. 大连: 大连工业大学, 2018.
[19]RODRIGUEZ M E, LOPES C A, VAN BROOCK M, et al. Screening and typing of Patagonian wine yeasts for glycosidase activities[J]. Journal of Applied Microbiology, 2004, 96(1):84-95.
[20]丁涛. 柚苷酶发酵放大技术及酶制剂的研究[D]. 厦门: 集美大学, 2011.
[21]廉萌. 真菌共培养强化柚苷酶发酵的过程优化及有机酸分析[D]. 大连: 大连工业大学, 2017.
[22]卢建明,张晨,刘志伟. 产柚苷酶菌株的初步筛选[J]. 广东化工, 2005, 32(3):15-16.
[23]朱运平,郗梦露,李秀婷,等. 高产柚苷酶菌株米曲霉的诱变育种及发酵条件优化[J]. 中国食品学报, 2018, 18(8):115-124.
[24]吕伟丽. Bacillus litoralis C44 α-L-鼠李糖苷酶基因的克隆、表达及酶学性质研究[D]. 保定: 河北大学, 2017.
[25]朱运平,郗梦露,白雪,等. 柚苷酶的生产及其在食品工业中的研究进展[J]. 中国食品添加剂, 2015(6):155-160.
[26]袁文博,江波,张涛. 一株产柚苷酶菌株的ARTP诱变育种及培养基的优化[J]. 食品与生物技术学报, 2018, 37(9):962-970.
[27]黄超,王俊鹏,雷生姣,等. 柚苷酶高产菌株的诱变选育及产酶条件的优化[J]. 食品科技, 2015, 40(8):11-16.
[28]陈玲,涂晓嵘,涂国全. NTG诱变筛选高产柚苷酶抗药性突变株[J]. 江西农业大学学报, 2007,29(4):670-674.
[29]刘伟,李文京. 基因重组技术引发的生物安全问题及对策探讨[J]. 中国兽医杂志, 2014,50(12):98-100.
[30]LIU Q, LU L, XIAO M. Cell surface engineering of α-l-rhamnosidase for naringin hydrolysis[J]. Bioresource Technology, 2012, 123:144-149.
[31]张益民. Aspergillus terreus来源α-L-鼠李糖苷酶在毕赤酵母细胞表面的高效展示及应用[D]. 广州: 华南理工大学, 2021.
[32]谢丽萍. 黑曲霉糖苷酶的纯化、应用及α-L-1,6-鼠李糖苷酶在毕赤酵母中的重组表达研究[D]. 杭州: 浙江工业大学, 2014.
[33]XIA X K, ZHANG Y E, LEI S J, et al. Identification and iterative combinatorial mutagenesis of a new naringinase-producing strain, Aspergillus tubingensis MN589840[J]. Letters in Applied Microbiology,2021, 72(2):141-148.
[34]KAUR A, SINGH S, SINGH R S, et al. Hydrolysis of citrus peel naringin by recombinant α-L-rhamnosidase from Clostridium stercorarium[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10):1419-1422.
[35]LI L, YU Y, ZHANG X, et al. Expression and biochemical characterization of recombinant α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528[J]. International Journal of Biological Macromolecules, 2016, 85:391-399.
[36]PURI M. Updates on naringinase: structural and biotechnological aspects[J]. Applied Microbiology and Biotechnology,2012, 93(1):49-60.
[37]MICHLMAYR H, BRANDES W, EDER R, et al. Characterization of two distinct glycosyl hydrolase family 78 α-L-Rhamnosidases from pediococcus acidilactici[J]. Applied and Environmental Microbiology, 2011, 77(18):6524-6530.
[38]CUI P W, WEN R, XIAO Z W, et al. Purification process and characterization of naringinase from Penicillium sp.1523[J]. Science and Technology of Food Industry, 2014, 15(1):1-3.
[39]NI H, CHEN F, CAI H, et al. Characterization and preparation of Aspergillus niger naringinase for dering citrus juice[J]. Journal of Food Science, 2012, 77(1): 1-7.
[40]PURI M, BANERJEE U C. Production, purification, and characterization of the debittering enzyme naringinase[J]. Biotechnology Advances, 2000, 18(3): 207-217.
[41]VAN D, ALBANG R, ALBERMANN K, et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum[J]. Nature Biotechnology, 2008, 26(10):1161-1168.
[42]PEL H J, WIND J H, ARCHER D B, et al. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J]. Nature Biotechnology, 2007, 25(2):221-231.
[43]ARNAUD M B, CHIBUCOS M C, COSTANZO M C, et al. The Aspergillus genome database, a curated comparative genomics resource for gene, protein and sequence information for the Aspergillus research community[J]. Nucleic Acids Research,2010, 38:420-427.
[44]DAN S, MARTON I, DEKEL M, et al. Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger beta-glucosidase[J]. Journal of Biological Chemistry,2000, 275(7):4973-4980.
[45]KOSEKI T, MESE Y, NISHIBORI N, et al. Characterization of an α-L-rhamnosidase from Aspergillus kawachii and its gene[J]. Applied microbiology and Biotechnology, 2008, 80(6):1007-1013.
[46]ROJAS N L, VOGET C E, HOURS R A, et al. Purification and characterization of a novel alkaline α-L-rhamnosidase produced by Acrostalagmus luteo albus[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(9):1515-1522.
[47]ODA M, INABA S, KAMIYA N, et al. Structural and thermodynamic characterization of endo-1,3-β-glucanase: Insights into the substrate recognition mechanism[J]. Biochimica et Biophysica Acta-proteins and Proteomics,2018, 1866(3):415-425.
[48]PACHL P, KAPESOVA J, BRYNDA J, et al. Rutinosidase from Aspergillus niger: crystal structure and insight into the enzymatic activity[J]. FEBS Journal,2020, 287(15):3315-3327.
[49]BORKAR V, CHAKRABORTY S, GOKHALE J S. Fermentative production of naringinase from aspergillus niger van tieghem MTCC 2425 using citrus wastes: process optimization, partial purification, and characterization[J]. Applied biochemistry and Biotechnology, 2020, 193:1-17.
[50]BORZOVA N, GUDZENKO O, VARBANETS L. Purification and characterization of a naringinase from cryptococcus albidus[J]. Applied Biochemistry and Biotechnology, 2018, 184(3):953-969.
[51]邓媛,毛勇,杨国武,等. 黑曲霉TC-01产柚苷酶分离纯化及其降解内毒素研究初探[J]. 中国食品添加剂, 2018(1):80-86.
[52]王维娜,李佥,田晶,等. 黑曲霉液态发酵产柚苷酶的分离纯化及其性质研究[J]. 现代食品科技, 2016, 32(7):72-78,46.
[53]崔培梧,文蓉,肖作为,等. 青霉菌柚苷酶的分离纯化及酶学性质[J]. 食品工业科技, 2014, 35(15):171-174,179.
[54]CHANG H Y, LEE Y B, BAE H A, et al. Purification and characterization of Aspergillus sojae naringinase: the production of pruning exhibiting markedlyenhanced solubility with in vitro inhibition of HMG-CoA reductase[J]. Food Chemistry, 2011, 124:234-241.
[55]CUI Z, MARUYAMA Y, MIKAMI B, et al. Crystallization and preliminary crystallographic analysis of the family GH78α-L-rhamnosidase RhaB from Bacillus sp. GL1[J]. Acta Crystallographica Section F-Structural Biology Communications,2006, 62(7):646-648.
[56]FUJIMOTO Z, JACKSON A, MICHIKAWA M, et al. The structure of a Streptomyces avermitilis α-L-rhamnosidase reveals a novel carbohydrate-binding module CBM67 within the six-domain arrangement[J]. Journal of Biological Chemistry, 2013, 288(17):12376-12385.
[57]陈月龙. 棘孢曲霉JMUdb058柚苷酶的结构及其水解柚皮苷的特性研究[D]. 厦门: 集美大学, 2012.
[58]O’NEILL E C, STEVENSON C E, PATERSON M J, et al. Crystal structure of a novel two domain GH78 family α-rhamnosidase from Klebsiella oxytoca with rhamnose bound[J]. Proteins,2015, 83(9):1742-1749.
[59]OGAWA S, TAKAHASHI I. Unveiling the uniqueness of crystal structure and crystalline phase behavior of anhydrous octyl β-D-Glucoside using aligned assembly on a surface[J]. Polymers, 2020, 12(3):671
[60]HONDA Y, ARAI S, SUZUKI K, et al. The crystal structure of an inverting glycoside hydrolase family 9 exo-β-D-glucosaminidase and the design of glycosynthase[J]. The Biochemical Journal, 2016, 473(4):463-472.
[61]POZZO T, PASTEN J L, KARLSSON E N, et al. Structural and functional analyses of beta-glucosidase 3B from Thermotoga neapolitana: a thermostable three-domain representative of glycoside hydrolase 3[J]. Journal of Molecular Biology,2010, 397(3):724-739.
[62]MOHSIN I, POUDEL N, LI D C, et al. Crystal structure of a GH3 β-Glucosidase from the thermophilic fungus Chaetomium thermophilum[J]. International Journal of Molecular Sciences,2019, 20(23):1-7.
[63]PURI M, MARWAHA S S, KOTHARI R M, et al. Biochemical basis of bitterness in citrus fruit juices and biotech approaches for debittering[J]. Critical Reviews in Biotechnology, 1996, 16(2):145-155.
[64]王壮. 不同柑橘种质资源及不同产区纽荷尔脐橙果实苦味品质的评价[D]. 武汉: 华中农业大学, 2011.
[65]MAHAWAR M K, JALGAONKAR K, BIBWE B, et al. Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulate L.): A review[J]. Journal of Food Science and Technology-Mysore, 2019, 57(5):799-815
[66]黄春霞,刘萍,邓光宙,等. 采用高效液相色谱法测定沙田柚果实主要苦味物质的研究[J]. 中国南方果树, 2014, 43(6):57-59.
[67]刘韬,乔宁,饶敏,等. 基于色谱质谱联用技术分析纽荷尔脐橙果汁及其果酒的香气成分和苦味物质[J]. 食品工业科技, 2018, 39(4):244-249.
[68]曾竟蓝,马胤鹏,秦丹,等. 柑橘酒发酵过程中总黄酮、柠檬苦素和诺米林含量变化[J]. 中国酿造, 2019, 38(4):80-83.
[69]张晓丹. 椪柑酒发酵工艺及苦味物质的研究[D]. 长沙: 湖南农业大学, 2017.
[70]江飞凤,胡鹏刚,田太江,等. 柚子酒酶法脱苦工艺优化及香气成分分析[J]. 现代食品科技, 2021, 37(8):275-285.
[71]雷生姣,潘思轶. 柚(皮)苷酶的研究进展[J]. 食品科学, 2009, 30(19):314-318.
[72]CHIEN P J, SHEU F, YUAN T S. Monitoring enzymatic debittering in grapefruit juice by high performance liquid chromatography[J]. Journal of Food and Drug Analysis, 2001, 9(2):115-120.
[73]MARWAHA S, PURI M, BHULLAR M, et al. Optimization of parameters for hydrolysis of limonin for debittering of kinnow mandarin juice by Rhodococcus fascians[J]. Enzyme & Microbial Technology, 1994, 16(8):723-725.
[74]YUSOF S, GHAZALI H M, KING G S. Naringin content in local citrus fruits[J]. Food Chemistry, 1990, 37(2):113-121.
[75]张方艳,童芳,刘美伶,等.柑橘酒酶法脱苦工艺的研究[J]. 合肥师范学院学报, 2021, 39(6):21-24.
[76]CUSTODIO M V G, OTAMENDI F P, DANIEL R V, et al. Production and characterization of an Aspergillus terteus α-l-rhamnosidase of oenological interest [J]. Zeitschrift fur Lebensmittel-Untersuchung und Forschung, 1996, 203(6):522-527.
[77]田怀香,熊娟涓,于海燕,等.果酒中香气化合物的生物转化与调控机制研究进展[J]. 食品科学, 2022, 43(19):36-47.
[78]王哲,吴韶辉,刘福,等.β-葡萄糖苷酶对柑橘汁酶解增香调控及香气成分的影响[J]. 现代农业科技, 2021(20):61-64,76.

备注/Memo

备注/Memo:
收稿日期:2022-10-10作者简介:林静(1997-),女,四川巴中人,硕士研究生,研究方向为食品微生物与发酵。(E-mail)1294684290@qq.com通讯作者:刘兴艳,(E-mail)lxy05@126.com
更新日期/Last Update: 2023-11-17