[1]王瑞飞,孔盈利,魏艺璇,等.菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J].江苏农业学报,2023,(04):966-977.[doi:doi:10.3969/j.issn.1000-4440.2023.04.006]
 WANG Rui-fei,KONG Ying-li,WEI Yi-xuan,et al.Effects of microbial agents on physicochemical properties and microbial community structure of chicken manure-biochar compost[J].,2023,(04):966-977.[doi:doi:10.3969/j.issn.1000-4440.2023.04.006]
点击复制

菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年04期
页码:
966-977
栏目:
耕作栽培·资源环境
出版日期:
2023-08-30

文章信息/Info

Title:
Effects of microbial agents on physicochemical properties and microbial community structure of chicken manure-biochar compost
作者:
王瑞飞12 孔盈利1魏艺璇1白双1展莉平1张昊12李明军1杨清香12
(1.河南师范大学生命科学学院,河南新乡453007;2.河南省农业微生物生态与技术国际联合实验室,河南新乡453007)
Author(s):
WANG Rui-fei12KONG Ying-li1WEI Yi-xuan1BAI Shuang1ZHAN Li-ping1ZHANG Hao12LI Ming-jun1YANG Qing-xiang12
(1.College of Life Sciences, Henan Normal University, Xinxiang 453007, China;2.Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Xinxiang 453007, China)
关键词:
鸡粪菌剂生物炭堆肥微生物群落
Keywords:
chicken manuremicrobial agentsbiocharcompostingmicrobial community
分类号:
S141.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.04.006
文献标志码:
A
摘要:
为了探讨菌剂[芽孢杆菌(Bacillus sp.)BA、枯草芽孢杆菌(Bacillus subtilis)K1、巨大芽孢杆菌(Bacillus magaterium)J2和木霉(Trichoderma sp.)M1混合菌剂]在鸡粪-生物炭堆肥堆制过程中的作用,通过理化性质测定、高通量测序等方法研究菌剂对堆肥堆体理化性质、微生物群落演替的影响,评估菌剂处理的堆肥对植物生长的潜在作用。结果表明,菌剂处理组堆肥堆体的温度在堆肥堆制第4 d达到70 ℃以上(比对照早26 d),且臭味基本消失;在堆肥堆制第53 d,处理组有明显土腥味(对照仍有刺鼻臭味),总有机质、铵态氮含量分别比对照低7630 g/kg、3783 mg/kg,全氮、有效磷、速效钾含量分别比对照高602 g/kg、1570 mg/kg、5040 mg/kg。群落分析结果表明,厚壁菌门(Firmicutes)、子囊菌门(Ascomycota)分别为对照中占绝对优势的细菌门(相对丰度>8000%)、真菌门(相对丰度>5900%),但在堆肥堆制过程中,处理组放线菌门(Actinobacteria)在堆制第53 d取代厚壁菌门(Firmicutes)成为绝对优势菌门(相对丰度6640%),子囊菌门(Ascomycota)的相对丰度在堆制第30~53 d明显高于对照。在属水平上,处理组堆肥的有机质转化细菌如假纤细芽孢杆菌(Pseudogracilibacillus)、布哈加瓦氏菌(Bhargavaea)等的相对丰度在堆制第14 d、30 d,生防链霉菌(Streptomyces)等的相对丰度在堆制第53 d显著高于对照;生防真菌枝顶孢霉(Acremonium)的相对丰度始终高于对照,其他真菌尤其是致病真菌如毛孢子菌(Cutaneotrichosporon)、镰刀霉(Fusarium)的相对丰度在堆制第53 d低于对照。在菌剂处理的堆肥浸提液培养下,上海青种子的发芽率、根长分别达到9160%、159 cm,均高于对照。由此可见,菌剂能高效推动鸡粪-生物炭堆肥堆制过程中微生物群落变化,缩短腐熟进程,提升堆肥品质。
Abstract:
In order to explore the role of Bacillus sp BA, Bacillus subtilis K1, Bacillus magaterium J2 and Trichoderma sp M1 in the composting of chicken manure-biochar, the effects of microbial agents on the physicochemical properties and microbial community succession of compost were studied by means of physical and chemical properties determination and high-throughput sequencing, and the potential effects of microbial agents on plant growth were evaluated The results showed that the composting temperature of the microbial agent treatment group reached more than 70 ℃ on the 4th day of composting (26 days earlier than the control), and the odor basically disappeared On the 53rd day of composting, the treatment group had obvious soil odor (the control still had a pungent odor) Compared with the control, the total organic matter content and ammonium nitrogen content decreased by 7630 g/kg and 3783 mg/kg, respectively, and the total nitrogen content, available phosphorus content and available potassium content increased by 602 g/kg, 1570 mg/kg and 5040 mg/kg, respectively The results of community analysis showed that Firmicutes and Ascomycota were the dominant bacterial phyla (relative abundance > 8000%) and fungal phylum (relative abundance > 5900%) in the control, respectively During the composting process, Actinobacteria in the treatment group replaced Firmicutes as the absolute dominant phylum (relative abundance was 6640%) on the 53rd day of composting, and the relative abundance of Ascomycota was significantly higher than that of the control on the 30th to 53rd day of composting At the genus level, the relative abundance of organic matter-transforming bacteria such as Pseudogracilibacillus and Bhargavaea in the compost of the treatment group was significantly higher than that of the control on the 14th and 30th day of composting, and the relative abundance of Streptomyces was significantly higher than that of the control on the 53rd day of composting The relative abundance of biocontrol fungus Acremonium in the treatment group was always higher than that in the control group, and the relative abundance of other fungi, especially pathogenic fungi such as Cutaneotrichosporon and Fusarium, was lower than that in the control group on the 53rd day of composting Under the cultivation of compost extract treated with microbial agents, the seed germination rate and root length of Brassica rapa var chinensis (Linnaeus) Kitamura reached 9160% and 159 cm, respectively, which were higher than those of the control The microbial agents could effectively promote the change of microbial community in the composting process of chicken manure-biochar, shorten the maturity process and improve the quality of compost

参考文献/References:

[1]尹萌,孙寓姣,李洁,等. 生物质废弃物发酵过程中菌群多样性及秸秆降解菌的筛选[J]. 江苏农业学报,2020,36(3):591-598.
[2]CHEN H Y, AWASTHI S K, LIU T, et al. Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting[J]. Journal of Hazardous Materials, 2020, 389:121908.
[3]杜婕,宋修超,马艳. 中药渣堆肥微生物群落结构及纤维素降解酶基因表达量变化特征[J].江苏农业学报,2022,38(2):352-360.
[4]DING S, HUANG W J, XU W J, et al. Improving kitchen waste composting maturity by optimizing the processing parameters based on machine learning model[J]. Bioresource Technology, 2022, 360:127606.
[5]BIAN B, HU X R, ZHANG S P, et al. Pilot-scale composting of typical multiple agricultural wastes: parameter optimization and mechanisms[J]. Bioresource Technology, 2019, 287:121482.
[6]ZHENG G D, LIU Y, LI Y J, et al. Inhibitory effects of the addition of KNO3 on volatile sulfur compound emissions during sewage sludge composting[J]. Bioengineering, 2022, 9(6):258.
[7]WANG M M, WU Y C, ZHAO J Y, et al. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting[J]. Bioresource Technology, 2022, 363:127872.
[8]RASTOGI M, NANDAL M, KHOSLA B. Microbes as vital additives for solid waste composting[J]. Heliyon, 2020, 6(2):e03343.
[9]LU T, YANG Y, FENG W J, et al. Effect of the compound bacterial agent on microbial community of the aerobic compost of food waste[J]. Letters in Applied Microbiology, 2022, 74(1):32-43.
[10]LI C N, LI H Y, YAO T, et al. Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw[J]. Bioresource Technology, 2019, 289:121653.
[11]SNCHEZ O J, OSPINA D A, MONTOYA S. Compost supplementation with nutrients and microorganisms in composting process[J]. Waste Management, 2017, 69:136-153.
[12]吴晓东,邢泽炳,何远灵,等. 添加生物炭对鸡粪好氧堆肥过程中养分转化的研究[J]. 中国土壤与肥料, 2019(5):141-146.
[13]KARCZEWSKI K, RISS H W, MEYER E I. Comparison of DNA-fingerprinting (T-RFLP) and high-throughput sequencing (HTS) to assess the diversity and composition of microbial communities in groundwater ecosystems[J]. Limnologica, 2017, 67:45-53.
[14]JIANG X, DENG L T, MENG Q X, et al. Fungal community succession under influence of biochar in cow manure composting[J]. Environmental Science and Pollution Research, 2020, 27:9658-9668.
[15]DUAN Y M, AWASTHI M K, WU H H, et al. Biochar regulates bacterial-fungal diversity and associated enzymatic activity during sheep manure composting[J]. Bioresource Technology, 2022, 346:126647.
[16]ZHAI W H, JIA L M, ZHAO R, et al. Response characteristics of nitrous oxide related microorganisms to biochar addition during chicken manure composting[J]. Process Safety and Environmental Protection, 2023, 169:604-608.
[17]WANG K, YIN X B, MAO H L, et al. Changes in structure and function of fungal community in cow manure composting[J]. Bioresource Technology, 2018, 255:123-130.
[18]ZENG Z T, GUO X Y, XU P, et al. Responses of microbial carbon metabolism and function diversity induced by complex fungal enzymes in lignocellulosic waste composting[J]. Science of the Total Environment, 2018, 643: 539-547.
[19]毛红祥,桂素萍,肖植特. AA3型连续流动分析仪测定有机肥料全氮含量[J]. 中国土壤与肥料, 2015(3):116-119.
[20]中华人民共和国农业部. 中华人民共和国农业行业标准: 有机肥料: NY 525—2012[S]. 北京: 中国农业出版社, 2012.
[21]XIE J, GU J, WANG X J. Insights into the beneficial effects of woody peat for reducing abundances of antibiotic resistance genes during composting[J]. Bioresource Technology, 2021, 342: 125903.
[22]刘忠华,赵帅翔,刘会芳,等. 条垛堆肥-蚯蚓堆肥联合处理对堆肥产品性状的影响[J]. 中国土壤与肥料, 2019(4):200-207.
[23]孟国欣,查同刚,巩潇,等. 污泥添加园林废弃物堆肥过程参数变化及腐熟度综合评价[J]. 生态环境学报, 2018, 27(8):1538-1546.
[24]AMUAH E E Y, FEI-BAFFOE B, SACKEY L N A, et al. A review of the principles of composting: understanding the processes, methods, merits, and demerits[J]. Organic Agriculture, 2022, 12:547-562.
[25]XU Z M, LI R H, LIU T, et al. Effect of inoculation with newly isolated thermotolerant ammonia-oxidizing bacteria on nitrogen conversion and microbial community during cattle manure composting[J]. Journal of Environmental Management, 2022, 317:115474.
[26]LI C N, LI H Y, YU T, et al. Effects of microbial inoculation on enzyme activity, available nitrogen content, and bacterial succession during pig manure composting[J]. Bioresource Technology, 2020, 306(3):123167.
[27]武淑霞,刘宏斌,黄宏坤,等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(5): 103-111.
[28]张羽鑫,刘闯,黄殿男,等. 超高温菌好氧堆肥技术对人粪便的处理效果[J].江苏农业科学,2021,49(4):179-185.
[29]黎妍妍,彭五星,张婷,等. 万寿菊秸秆堆肥在缓解烟草连作障碍中的作用[J].南方农业学报,2022,53(2):451-459.
[30]张霞,李健,潘孝青,等. 规模兔场污液异位发酵处理技术应用[J].江苏农业学报,2021,37(6):1471-1475.
[31]王小兵,王海潮,汪晓丽,等. 厨余垃圾堆肥腐熟降解菌株的筛选与鉴定[J].江苏农业科学,2021,49(23):213-218.
[32]邓辉,王成,吕豪豪,等. 堆肥过程放线菌演替及其木质纤维素降解研究进展[J]. 应用与环境生物学报, 2013, 19(4):581-586.
[33]YANG X C, HAN Z Z, RUAN X Y, et al. Composting swine carcasses with nitrogen transformation microbial strains: succession of microbial community and nitrogen functional genes[J]. Science of the Total Environment, 2019, 688:555-566.
[34]MARYAM H, MUSHTAQ T S A, JAVAD F, et al. Isolation and characterization of denitrifying halophilic bacteria from Bahr Al-Milh Salt Lake, Karbala, Iraq[J]. Journal of Applied Biology and Biotechnology, 2018, 6(4):32-36.
[35]ZHANG W M, YU C X, WANG X J, et al. Increased abundance of nitrogen transforming bacteria by higher C/N ratio reduces the total losses of N and C in chicken manure and corn stover mix composting[J]. Bioresource Technology, 2020, 297:122410.
[36]DUAN Y M, AWASTHI S K, LIU T, et al. Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting[J]. Bioresource Technology, 2019, 280:79-87.
[37]KHAN M S, GAO J L, MUNIR I, et al. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects[J]. BioMed Research International, 2021,2021:9930210.
[38]LI Z Q, MA L, ZHANG Y, et al. Effect of wheat cultivars with different resistance to Fusarium head blight on rhizosphere Fusarium graminearum abundance and microbial community composition[J]. Plant and Soil, 2020, 448(1/2):383-397.
[39]SAWASWONG V, CHANCHAEM P, KHAMWUT A, et al. Oral-fecal mycobiome in wild and captive cynomolgus macaques (Macaca fascicularis)[J]. Fungal Genetics and Biology, 2020, 144:103468.

相似文献/References:

[1]张金辉,李银月,张发文,等.物料碳氮比及微生物菌剂接种量对黄瓜秧-鸡粪堆肥过程的影响[J].江苏农业学报,2024,(02):260.[doi:doi:10.3969/j.issn.1000-4440.2024.02.008]
 ZHANG Jin-hui,LI Yin-yue,ZHANG Fa-wen,et al.Effects of carbon-nitrogen ratio of materials and inoculation amount of microbial inoculants on the composting process of cucumber seedlings-chicken manure[J].,2024,(04):260.[doi:doi:10.3969/j.issn.1000-4440.2024.02.008]

备注/Memo

备注/Memo:
收稿日期:2022-07-26 基金项目:国家现代农业产业技术体系项目(CARS-21);河南省科技攻关项目(202102110219);河南省高等学校重点科研项目(22B180006、20A180015);中原科技创新领军人才项目(224200510011)作者简介:王瑞飞(1983-),男,河南汝州人,博士,副教授,主要从事农业微生物生态与技术研究。(E-mail)wswrf@163.com 通讯作者:杨清香,(E-mail)yangqx@htu.edu.cn
更新日期/Last Update: 2023-09-12