[1]魏清宇,吴鹏飞,叶红心,等.边鸡快长型与慢长型品系胚胎骨骼肌发育中差异可变剪切[J].江苏农业学报,2023,(02):444-452.[doi:doi:10.3969/j.issn.1000-4440.2023.02.017]
 WEI Qing-yu,WU Peng-fei,YE Hong-xin,et al.Differential alternative splicing during embryonic skeletal muscle development in fast-growing and slow-growing strains of Bian chicken[J].,2023,(02):444-452.[doi:doi:10.3969/j.issn.1000-4440.2023.02.017]
点击复制

边鸡快长型与慢长型品系胚胎骨骼肌发育中差异可变剪切()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
444-452
栏目:
畜牧兽医·水产养殖
出版日期:
2023-04-30

文章信息/Info

Title:
Differential alternative splicing during embryonic skeletal muscle development in fast-growing and slow-growing strains of Bian chicken
作者:
魏清宇1吴鹏飞2叶红心1李培峰1崔少华1张旗1张丽1张跟喜2
(1.山西农业大学动物科学学院,山西太原030032;2.扬州大学动物科学与技术学院,江苏扬州225009)
Author(s):
WEI Qing-yu1WU Peng-fei2YE Hong-xin1LI Pei-feng1CUI Shao-hua1ZHANG Qi1ZHANG Li1ZHANG Gen-xi2
(1.College of Animal Science, Shanxi Agricultural University, Taiyuan 030032, China;2.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)
关键词:
骨骼肌可变剪切
Keywords:
skeletal musclealternative splicingchicken
分类号:
S831.2
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.017
文献标志码:
A
摘要:
骨骼肌生长发育对肉鸡产业至关重要,可变剪切(AS)作为生物体内一种普遍存在的调控机制,在骨骼肌发育过程中发挥着重要作用。本研究以快长型、慢长型边鸡品系为试验材料,收集受精蛋后孵化至14胚龄和20胚龄,然后采集鸡胚腿肌进行转录组测序,用于分析骨骼肌发育过程中的差异可变剪切事件。在14胚龄慢长型(S14)与14胚龄快长型(F14)比较组中共发生230个差异可变剪切事件,其对应了200个基因,在20胚龄慢长型(S20)与20胚龄快长型(F20)比较组中共发生373个差异可变剪切事件,其对应了324个基因,且2个比较组中存在47个相同的基因。GO富集分析结果表明,前20个富集条目中包括丝氨酸家族氨基酸分解代谢过程、肌球蛋白II细丝组装和肌动球蛋白结构组织等与骨骼肌发育相关的生物学过程。KEGG通路富集分析结果表明,前20条通路中有多条通路与骨骼肌发育相关,包括黏附连接、肌动蛋白细胞骨架调节和黏着斑等。基于STRING数据库对所有差异可变剪切事件的来源基因进行蛋白质互作网络分析,然后利用Cytoscape(3.8.2)软件中的插件CytoHubba筛选核心基因,结合富集分析结果在S14与F14比较组中发现TLN2、PARVB和ITGA6等多个关键候选基因,在S20与F20比较组中发现LDB3、PDLIM3、ITGB5、DMD、TNS3和RAC1等多个关键候选基因,同时,筛选到的PDLIM5和GIT1候选基因在14胚龄、20胚龄边鸡骨骼肌发育中均发挥重要作用。本研究结果为进一步解析骨骼肌发育调控机理奠定了基础,也为黄羽肉鸡的选育工作提供一定参考。
Abstract:
The growth and development of skeletal muscle is vital to the broiler industry. Alternative splicing (AS) is a universal regulation mechanism in organisms and plays an important role in the development of skeletal muscle. The fast-growing and slow-growing groups of Bian chicken were used as trial materials. After the fertilized eggs were collected and incubated to 14 and 20 days, the leg muscles of Bian chickens were collected for RNA-seq. Results showed that 230 and 373 differentially expressed alternative splicing events (DEAS) were found in S14 (14-day embryos of slow-growing chicken) vs F14 (14-day embryos of fast-growing chicken) and S20 (20-day embryos of slow-growing chicken) vs F20 (20-day embryos of fast-growing chicken) groups, corresponding to 200 and 324 host genes respectively. There were 47 same host genes in the two comparison groups. GO analysis results showed that biological processes (BP) terms related to skeletal muscle development in the top 20, such as serine family amino acid catabolic process, myosin II filament assembly and actomyosin structure organization, were obtained. KEGG enrichment analysis found that some of the top 20 pathways were also related to skeletal muscle development, including adherens junction, regulation of actin cytoskeleton and focal adhesion. Protein-protein interaction network (PPI) analysis was performed for the host genes of all the DEAS. Key candidate host genes were further screened using the plug-in CytoHubba combined with functional enrichment results. Key candidate host genes TLN2, PARVB and ITGA6 were found in S14 vs F14 group, and LDB3, PDLIM3, ITGB5, DMD, TNS3 and RAC1 were found in S20 vs F20 group. The results also showed that PDLIM5 and GIT1 were both important in the two comparison groups. These results can lay a foundation for further understanding and analyzing the regulation mechanism of skeletal muscle development, and also provide a reference for the breeding of yellow-feathered broilers.

参考文献/References:

[1]BUSH S J, CHEN L, TOVAR-CORONA J M, et al. Alternative splicing and the evolution of phenotypic novelty[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2017, 372(1713): 20150474.
[2]COOMER A O, BLACK F, GREYSTOKE A, et al. Alternative splicing in lung cancer[J]. Biochimica et Biophysica Acta(BBA) Gene Regulatory Mechanisms, 2019, 1862(11/12): 194388.
[3]WANG E T, SANDBERG R, LUO S, et al. Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221): 470-476.
[4]PAN Q, SHAI O, LEE L J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nature Genetics, 2008, 40(12): 1413-1415.
[5]NILSEN T W, GRAVELEY B R. Expansion of the eukaryotic proteome by alternative splicing[J]. Nature, 2010, 463(7280): 457-463.
[6]KEREN H, LEV-MAOR G, AST G. Alternative splicing and evolution: diversification, exon definition and function[J]. Nature Reviews Genetics, 2010, 11(5): 345-355.
[7]BHADRA M, HOWELL P, DUTTA S, et al. Alternative splicing in aging and longevity[J]. Human Genetics, 2020, 139(3): 357-369.
[8]JAKUBAUSKIENE E, KANOPKA A. Alternative splicing and hypoxia puzzle in Alzheimer’s and Parkinson’s diseases[J]. Genes, 2021, 12(8): 1272.
[9]SCOTTI M M, SWANSON M S. RNA mis-splicing in disease[J]. Nature Reviews Genetics, 2016, 17(1): 19-32.
[10]NIKONOVA E, KAO S Y, SPLETTER M L. Contributions of alternative splicing to muscle type development and function[J]. Seminars in Cell & Developmental Biology, 2020, 104: 65-80.
[11]NAKKA K, GHIGNA C, GABELLINI D, et al. Diversification of the muscle proteome through alternative splicing[J]. Skeletal Muscle, 2018, 8(1): 8.
[12]SEBASTIAN S, FARALLI H, YAO Z, et al. Tissue-specific splicing of a ubiquitously expressed transcription factor is essential for muscle differentiation[J]. Genes & Development, 2013, 27(11): 1247-1259.
[13]BODINE S C, STITT T N, GONZALEZ M, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo[J]. Nature Cell Biology, 2001, 3(11): 1014-1019.
[14]HINKLE E R, WIEDNER H J, BLACK A J, et al. RNA processing in skeletal muscle biology and disease[J]. Transcription-Austin, 2019, 10(1): 1-20.
[15]王嘉力,贾存灵,苏利红,等. 家鸡CHD1基因PCR快速性别鉴定方法的建立及其在早期鸡胚中的应用[J]. 家禽科学, 2009(12): 3-7.
[16]PARKHOMCHUK D, BORODINA T, AMSTISLAVSKIY V, et al. Transcriptome analysis by strand-specific sequencing of complementary DNA[J]. Nucleic Acids Research, 2009, 37(18): e123.
[17]KIM D, LANGMEAD B, SALZBERG S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
[18]SHEN S, PARK J W, LU Z X, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): E5593-E5601.
[19]KANEHISA M, ARAKI M, GOTO S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Research, 2008, 36: D480-D484.
[20]YOUNG M D, WAKEFIELD M J, SMYTH G K, et al. Gene ontology analysis for RNA-seq: accounting for selection bias[J]. Genome Biology, 2010, 11: R14.
[21]BU D, LUO H, HUO P, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis[J]. Nucleic Acids Research, 2021, 49(W1): W317-W325.
[22]BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nature Reviews Molecular Cell Biology, 2017, 18(7): 437-451.
[23]YANG Q, ZHAO J, ZHANG W, et al. Aberrant alternative splicing in breast cancer[J]. Journal of Molecular Cell Biology, 2019, 11(10): 920-929.
[24]WU P, ZHANG M, WEBSTER N J G. Alternative RNA splicing in fatty liver disease[J]. Frontiers in Endocrinology, 2021, 12: 613213.
[25]ZHANG M, HAN Y, LIU J, et al. Rbm24 modulates adult skeletal muscle regeneration via regulation of alternative splicing[J]. Theranostics, 2020, 10(24): 11159-11177.
[26]LI Y, WANG J, ELZO M A, et al. Molecular profiling of DNA methylation and alternative splicing of genes in skeletal muscle of obese rabbits[J]. Current Issues in Molecular Biology, 2021, 43(3): 1558-1575.
[27]SHU Z, WANG L, WANG J, et al. Integrative analysis of nanopore and Illumina sequencing reveals alternative splicing complexity in pig longissimus dorsi muscle[J]. Frontiers in Genetics, 2022, 13: 877646.
[28]邹小利. 不同品种鸡胚胎期腿肌与胸肌发育的形态学对比研究[D]. 广州:华南农业大学.
[29]李伯江,李平华,吴望军,等. 骨骼肌肌纤维形成机制的研究进展[J]. 中国农业科学, 2014, 47(6): 1200-1207.
[30]BURRIDGE K. Focal adhesions: a personal perspective on a half century of progress[J]. FEBS Journal, 2017, 284(20): 3355-3361.
[31]CHEN B, XU J, HE X, et al. A genome-wide mRNA screen and functional analysis reveal FOXO3 as a candidate gene for chicken growth[J]. PLoS One, 2015, 10(9): e0137087.
[32]JONES F S, JONES P L. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling[J]. Developmental Dynamics, 2000, 218(2): 235-259.
[33]THEOCHARIS A D, SKANDALIS S S, GIALELI C, et al. Extracellular matrix structure[J]. Advanced Drug Delivery Reviews, 2016, 97: 4-27.
[34]HENDERSON C A, GOMEZ C G, NOVAK S M, et al. Overview of the muscle cytoskeleton[J]. Comprehensive Physiology, 2017, 7(3): 891-944.
[35]RODRIGUEZ-FDEZ S, BUSTELO X R. Rho GTPases in skeletal muscle development and homeostasis[J]. Cells, 2021, 10(11): 2984.
[36]YAMASHITA Y, MATSUURA T, KUROSAKI T, et al. LDB3 splicing abnormalities are specific to skeletal muscles of patients with myotonic dystrophy type 1 and alter its PKC binding affinity[J]. Neurobiology of Disease, 2014, 69: 200-205.
[37]WANG J Z, WU P, SHI Z M, et al. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD[J]. Brain & Development, 2017, 39(7): 547-556.
[38]HE H, YIN H, YU X, et al. PDLIM5 affects chicken skeletal muscle satellite cell proliferation and differentiation via the p38-MAPK pathway[J]. Animals, 2021, 11(4): 1016.
[39]BAHRI S M, CHOY J M, MANSER E, et al. The Drosophila homologue of Arf-GAP GIT1, dGIT, is required for proper muscle morphogenesis and guidance during embryogenesis[J]. Developmental Biology, 2009, 325(1): 15-23.(责任编辑:王妮)

相似文献/References:

[1]姬改革,胡艳,陶志云,等.蛋内注射T3 对鸭胚骨骼肌发育和MSTN mRNA 表达的影响[J].江苏农业学报,2016,(01):164.[doi:10.3969/j.issn.1000-4440.2016.01.025 ]
 JI Gai-ge,HU Yan,TAO Zhi-yun,et al.Effects of in ovo injecting triiodothyronine into egg on embryonic skeletal muscle development and expression of myostatin mRNA in duck[J].,2016,(02):164.[doi:10.3969/j.issn.1000-4440.2016.01.025 ]

备注/Memo

备注/Memo:
收稿日期:2022-06-04 基金项目:山西省重点研发项目(201703D221022-3);生物育种工程项目(yzgc129);国家肉鸡产业技术体系项目(CARS-41);江苏高校优势学科建设工程项目(PAPD);山西省现代农业产业技术体系建设专项资金资助项目(2022-07)作者简介:魏清宇(1973-),男,山西太谷人,硕士,副研究员,主要从事家禽育种研究工作。(E-mail)xmszjc@126.com。吴鹏飞为共同第一作者。通讯作者:张跟喜,(E-mail)gxzhang@yzu.edu.cn
更新日期/Last Update: 2023-05-12