[1]曹影丽,刘琪,柴震震,等.鸡cGAS基因的克隆、表达特性分析及FAdV-4感染前后亚细胞定位变化[J].江苏农业学报,2023,(02):453-460.[doi:doi:10.3969/j.issn.1000-4440.2023.02.018]
 CAO Ying-li,LIU Qi,CHAI Zhen-zhen,et al.Cloning and expression characteristics of chicken cGAS gene and changes in subcellular localization before and after FAdV-4 infection[J].,2023,(02):453-460.[doi:doi:10.3969/j.issn.1000-4440.2023.02.018]
点击复制

鸡cGAS基因的克隆、表达特性分析及FAdV-4感染前后亚细胞定位变化()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年02期
页码:
453-460
栏目:
畜牧兽医·水产养殖
出版日期:
2023-04-30

文章信息/Info

Title:
Cloning and expression characteristics of chicken cGAS gene and changes in subcellular localization before and after FAdV-4 infection
作者:
曹影丽刘琪柴震震杨侃侃梁月巧宋祥军邵颖涂健祁克宗
(兽医病理生物学与疫病防控安徽省重点实验室/安徽省动物性食品质量与生物安全工程实验室,安徽合肥230036)
Author(s):
CAO Ying-liLIU QiCHAI Zhen-zhenYANG Kan-kanLIANG Yue-qiaoSONG Xiang-junSHAO YingTU JianQI Ke-zong
(Anhui Key Laboratory of Veterinary Pathobiology and Disease Control/Anhui Province Animal Food Quality and Biosafety Engineering Laboratory, Hefei 230036, China)
关键词:
cGAS血清4型禽腺病毒(FAdV-4)序列分析原核表达亚细胞定位
Keywords:
cGASfowl adenovirus serotype 4(FAdV-4)sequence analysisprokaryotic expressionsubcellular localization
分类号:
S831
DOI:
doi:10.3969/j.issn.1000-4440.2023.02.018
文献标志码:
A
摘要:
cGAS作为一种新型的胞质DNA受体,在宿主抵抗DNA病毒而触发的天然免疫中起着至关重要的作用。血清4型禽腺病毒(Fowl adenovirus serotype 4,FAdV-4)是无囊膜的一种双链DNA病毒,可引起鸡肝炎-心包积液综合征。为明确鸡cGAS(chcGAS)基因功能,探究在鸡肝癌(LMH)细胞中过表达chcGAS以及FAdV-4感染前后细胞定位的变化情况。本研究针对chcGAS序列设计引物进行PCR扩增,并分析该基因序列与其他物种之间的同源性以及预测该基因的结构域,构建重组质粒pET-32a-chcGAS进行原核表达,通过SDS-PAGE和Western blot鉴定,利用激光共聚焦观察FAdV-4感染LMH细胞前后chcGAS细胞定位变化。结果表明,本试验克隆得到大小为1 317 bp的 chcGAS基因,与其他物种同源性为50.5%~84.4%,SDS-PAGE分析结果显示,chcGAS蛋白主要以可溶性蛋白质的形式在上清液处表达,目的蛋白质相对分子质量为75 000,与预期大小相符。亚细胞定位结果显示,FAdV-4感染可导致定位于细胞核膜上的chcGAS蛋白转移到细胞质中。本研究结果为进一步研究FAdV-4与cGAS-STING信号通路的关联调控机制提供了科学依据。
Abstract:
cGAS plays a key role in the host’s innate immune response against DNA viruses as a receptor for DNA recognition within the cytoplasm. Fowl adenovirus serotype 4 (FAdV-4) is a double-stranded DNA virus without an envelope, and can cause hepatitis-pericardial effusion syndrome in chicken. In order to clarify the function of chicken cGAS (chcGAS) gene, the overexpression of chcGAS in chicken liver cancer (LMH) cells and the changes of cell location before and after FAdV-4 infection were investigated. In this study, the primers were designed according to the chcGAS sequence, and the chcGAS gene was amplified by PCR. The homology between the gene sequence and other species was analyzed, and the domain was predicted. The recombinant plasmid pET-32a-chcGAS was constructed for prokaryotic expression, identified by SDS-PAGE and Western blot, and the localization changes of chcGAS in LMH cells before and after FAdV-4 infection were observed by laser confocal microscopy. The results showed that the chcGAS gene with a size of 1 317 bp was successfully cloned, and the homology with other species was 50.5%-84.4%. The results of SDS-PAGE analysis indicated that chcGAS protein was mainly expressed in the supernatant in the form of soluble protein. The relative molecular mass of target protein was 75 000, which was consistent with the expected size. The results of subcellular localization showed that FAdV-4 infection could lead to transfer of chcGAS protein localized on the nuclear membrane into the cytoplasm. These results can provide a scientific basis for further studying the correlation regulatory mechanism between FAdV-4 and cGAS-STING signaling pathways.

参考文献/References:

[1]TAKEUCHI O, AKIRA S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820.
[2]KATO K, ISHII R, GOTO E, et al. Structural and functional analyses of DNA-sensing and immune activation by human cGAS[J]. PLoS One, 2013, 8(10): e76983.
[3]MORI A, OLESZYCKA E, SHARP F A, et al. The vaccine adjuvant alum inhibits IL-12 by promoting PI3 kinase signaling while chitosan does not inhibit IL-12 and enhances Th1 and Th17 responses[J]. European Journal of Immunology, 2012, 42(10): 2709-2719.
[4]STEMPEL M, CHAN B, BRINKMANN M M. Coevolution pays off: herpesviruses have the license to escape the DNA sensing pathway[J]. Medical Microbiology and Immunology, 2019,208(3): 495-512.
[5]DAMBUZA I M, BROWN G D. C-type lectins in immunity: recent developments[J]. Current Opinion in Immunology, 2015, 32:21-27.
[6]STEIN S C, LAM E, FALCK-PEDERSEN E. Cell-specific regulation of nucleic acid sensor cascades: a controlling interest in the antiviral response[J]. Journal of Virology, 2012, 86(24): 13303-13312.
[7]ZHOU H, CHEN S, WANG M S, et al. Interferons and their receptors in birds: a comparison of gene structure, phylogenetic analysis, and cross modulation[J]. International Journal of Molecular Sciences, 2014,15(11):21045-21068.
[8]KEATING S E, BARAN M, BOWIE A G. Cytosolic DNA sensors regulating type I interferon induction[J]. Trends in Immunology, 2011,32(12):574-581.
[9]WU J X, SUN L J, CHEN X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by Cytosolic DNA[J]. Science,2013,339(6121):826-830.
[10]SUN L J, WU J X, DU F H, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science, 2013,339(6121):786-791.
[11]BARNETT K C, CORONAS-SERNA J M, ZHOU W, et al. Phosphoinositide interactions position cGAS at the plasma membrane to ensure efficient distinction between self- and viral DNA[J]. Cell, 2019,176(6):1432-1446.
[12]杨洁. 鸡源天然免疫DNA感受器cGAS-STING信号轴功能及其抗病毒作用研究[D].扬州:扬州大学,2020.
[13]OLIVEIRA M, RODRIGUES D R, GUILLORY V, et al. Chicken cGAS senses fowlpox virus infection and regulates macrophage effector functions[J]. Front in Immunology, 2021,11. DOI:10.3389/fimmu.2020.613079.
[14]WANG J, BA G, HAN Y Q, et al. Cyclic GMP-AMP synthase is essential for cytosolic double-stranded DNA and fowl adenovirus serotype 4 triggered innate immune responses in chickens[J]. International Journal of Biological Macromolecules, 2020,146:497-507.
[15]ZHANG H W, JIN W J, DING K, et al. Genetic characterization of fowl adenovirus strains isolated from poultry in China[J]. Avian Diseases, 2017,61(3):341-346.
[16]CAVLAR T, DEIMLING T, ABLASSER A, et al. Species-specific detection of the antiviral small-molecule compound CMA by STING[J]. The EMBO Journal, 2013,32(10):1440-1450.
[17]YIN D D, XUE M, YANG K K, et al. Molecular characterization and pathogenicity of highly pathogenic fowl adenovirus serotype 4 isolated from laying flock with hydropericardium-hepatitis syndrome[J]. Microbial Pathogenesis, 2020,147. DOI:10.1016/j.micpath.2020.104381.
[18]DAI J, HUANG Y J, HE X H, et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity[J]. Cell,2019,176(6):1447-1460.
[19]ZHOU Y, HE C, WANG L, et al. Post-translation regulation of antiviral innate signaling[J]. European Journal of Immunology, 2017,47(9):1414-1426.
[20]CIVRIL F, DEIMLING T, DE OLIVEIRA MANN C C, et al. Structural mechanism of cytosolic DNA sensing by cGAS[J]. Nature, 2013,498(7454):332-337.
[21]LI X D, WU J X, GAO D X. et al. Pivotal roles of core-cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects[J]. Science, 2013,341(6152):1390-1394.

备注/Memo

备注/Memo:
收稿日期:2022-05-23 基金项目:国家自然科学基金项目(31972642) 作者简介:曹影丽(1997-),女,河南周口人,硕士研究生,主要从事兽医病理学研究。(E-mail)1107801265@qq.com 通讯作者:祁克宗,(E-mail)qkz@ahau.edu.cn
更新日期/Last Update: 2023-05-12