参考文献/References:
[1]JAGADISH S V K, MURTY M V R, QUICK W P. Rice responses to rising temperatures-challenges, perspectives and future directions[J].Plant Cell & Environment,2015,38(9):1686-1698.
[2]IPCC. Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R].Cambridge,United Kingdom and New York,NY,USA:Cambridge University Press,2014:659-740.
[3]陈中督,徐春春,纪龙,等. 2004-2014年南方稻区双季稻生产碳足迹动态及其构成[J].应用生态学报,2018,29(11):3669-3676.
[4]徐富贤,刘茂,周兴兵,等. 长江上游高温伏旱区气象因子对杂交中稻产量与稻米品质的影响[J].应用与环境生物学报,2020,26(1):106-116.
[5]WANG Y L, WANG L, ZHOU J X, et al. Research progress on heat stress of rice at flowering stage[J].Rice Science,2019,26(1):1-10.
[6]聂江文,杨梅,熊勤学,等. 基于DSSAT模型模拟高低温灾害对荆州市中稻产量的影响及对策[J].江西农业大学学报,2017,39(2):223-229.
[7]任义方,高苹,林磊,等. 水稻高温热害气象风险区划和评估[J].自然灾害学报,2017,26(5):62-70.
[8]RANG Z W, JAGADISH S V K, ZHOU Q M, et al. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice[J].Environmental and Experimental Botany,2011,70(1):58-65.
[9]SNCHEZ B, RASMUSSEN A, PORTER J R. Temperatures and the growth and development of maize and rice: a review[J].Global Change Biology,2014,20(2):408-417.
[10]董明辉,顾俊荣,陈培峰,等. 麦秸还田与氮肥互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响[J].中国农业科学,2015,48(22):4437-4449.
[11]陈燕华,王亚梁,朱德峰,等. 外源油菜素内酯缓解水稻穗分化期高温伤害的机理研究[J].中国水稻科学,2019,33(5):457-466.
[12]甄博,周新国,陆红飞,等. 高温与涝交互胁迫对水稻孕穗期生理指标的影响[J].灌溉排水学报,2019,38(3):1-7.
[13]WANG Y L, ZHANG Y K, SHI Q H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J].Rice Science,2020,27(1):12.
[14]尚蓉霞,余欣,尤翠翠,等. 水稻孕穗期干旱-高温交叉胁迫的生理适应机制[J].甘肃农业大学学报,2019,54(6):39-46,54.
[15]符冠富,张彩霞,杨雪芹,等. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J].中国水稻科学,2015,29(6):637-647.
[16]杨浩,刘晨,王志飞,等. 作物花粉高温应答机制研究进展[J].植物学报,2019,54(2):157-167.
[17]邓运,田小海,吴晨阳,等. 热害胁迫条件下水稻花药发育异常的早期特征[J].中国生态农业学报,2010,18(2):377-383.
[18]MARTNEZ E M, ELLIS R H. Temporal sensitivities of rice seed development from spikelet fertility to viable mature seed to extreme-temperature[J].Crop Science,2015,55(1):354-364.
[19]FRANCIS K E, LAM S Y, HARRISON B D, et al. Pollen tetrad-based visual assay for meiotic recombination in arabidopsis[J].Proc Natl Acad Sci USA,2007,104:3913-3918.
[20]叶俊钗. 光敏核不育水稻(58S)小孢子发生过程中微管骨架变化及水稻花粉管内微丝分布[D]. 武汉:华中农业大学,2010.
[21]PRASAD P V, BOOTE K J, JR L A, et al. Species,ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J].Field Crops Research,2006,95(2):398-411.
[22]KUMAR N, JEENA N, SINGH H. Elevated temperature modulates rice pollen structure: a study from foothill of himalayan agro-ecosystem in India[J].3 Biotech,2019,9(5):175-178.
[23]ISLAM M R, FENG B H, CHEN T T, et al. Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets[J].Physiologia Plantarum,2018,165(3):644-663.
[24]曹珍珍. 高温对水稻花器伤害和籽粒品质影响的相关碳氮代谢机理[D]. 杭州:浙江大学,2014.
[25]张秋云,沈亚琦,蒋文翔,等. 水稻绒毡层发育相关转录因子研究进展[J].湖北农业科学,2021,60(19):5-10,14.
[26]HU Q Q, WANG W C, LU Q F, et al. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology,2021,21(1):428.
[27]LI N, ZHANG D S, LIU H S, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J].The Plant Cell,2006,18(11):2999-3014.
[28]FENG B H, ZHANG C X, CHEN T T, et al. Salicylic acid reverses pollen abortion of rice caused by heat stress[J].BMC Plant Biology,2018,18(1):245-260.
[29]LIU J, HOWELL S. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants[J].The Plant Cell,2010,22(9):2930-2942.
[30]王多祥,祝万万,袁政,等. 水稻雄性发育功能基因的发掘及应用[J].生命科学,2016,28(10):1180-1188.
[31]ENDO M, TSUCHIYA T, HAMADA K, et al. High temperatures cause male sterility in rice plants with transcriptional alterations during pollen development[J].Plant & Cell Physiology,2009,50(11):1911-1922.
[32]MüLLER F, RIEU I. Acclimation to high temperature during pollen development[J].Plant Reproduction,2016,29,107-118.
[33]MARIA V J D C, VENKATEGOWDA R, SHESHSHAYEE S, et al. Targeted phytohormone profiling identifies potential regulators of spikelet sterility in rice under combined drought and heat stress[J].International Journal of Molecular Sciences,2021,22(21):11690.
[34]闫振华,刘东尧,贾绪存,等. 花期高温干旱对玉米雄穗发育、生理特性和产量影响[J].中国农业科学,2021,54(17):3592-3608.
[35]张桂莲,陈立云,张顺堂,等. 高温胁迫对水稻花粉粒性状及花药显微结构的影响[J].生态学报,2008,28(3):1089-1097.
[36]李小湘,姚奕,潘孝武,等. 地方稻资源D43的开花期耐热特性研究[J].植物遗传资源学报,2017,18(2):275-282.
[37]胡秋倩,闫娜,崔克辉. 水稻颖花育性的高温伤害机理及其栽培调控措施[J].植物生理学报,2020,56(6):1177-1190.
[38]SNIDER J L, OOSTERHUIS D M. How does timing, duration and severity of heat stress influence pollen-pistil interactions in angiosperms?[J].Plant Signaling & Behavior,2011,6(7):930-933.
[39]曾晓春,周燮,吴晓玉. 水稻颖花开放机理研究进展[J].中国农业科学,2004,37(2):188-195.
[40]SINGH S, LATHA K M, AHMED I M. Genotypic differences for flowering behaviour in different varietal types in rice (Oryza sativa L.)[J].Indian Journal of Agricultural Sciences,2006,1(1/2):203-204.
[41]WANG W C, CUI K H, HU Q Q, et al. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice[J].The Crop Journal,2021,9(6):1344-1356.
[42]付永琦,向妙莲,蒋海燕,等. 水稻颖花开放前浆片转录组变化[J].中国农业科学,2016,49(6):1017-1033.
[43]何永明,林拥军,曾晓春. 水稻颖花自然开放过程中茉莉酸(JA)生物合成的变化[J].作物学报,2012,38(10):1891-1899.
[44]黄俊宝,何永明,曾晓春,等. 水稻颖花开放前花器官茉莉酸水平变化及浆片茉莉酸信号基因表达分析[J].中国农业科学,2015,48(6):1219-1227.
[45]DU H, LIU H B, XIONG L Z. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice[J].Frontiers in Plant Science,2013,4(397):397.
[46]徐小健,李波,刘思言,等. 抽穗期高温胁迫对水稻开花习性及结实率的影响[J].杂交水稻,2014,29(2):57-62.
[47]张桂莲,刘思言,张顺堂,等. 抽穗开花期不同高温处理对水稻开花习性和结实率的影响[J].中国农学通报,2012,28(30):116-120.
[48]张文倩,王亚梁,朱德峰,等. 花期夜温升高对水稻颖花开放及籽粒结实的影响[J].中国农业气象,2019,40(3):180-185.
[49]黄福灯,曹珍珍,李春寿,等. 花期高温对水稻花器官性状和结实的影响[J].核农学报,2016,30(3):565-570.
[50]宋有金,吴超. 高温影响水稻颖花育性的生理机制综述[J].江苏农业科学,2020,48(16):41-48.
[51]KOBAYASHI K, MATSUI T, MURATA Y, et al. Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at high temperatures[J].Plant Production Science,2011,14(2):89-95.
[52]MATSUI T, KOBAYASI K, KAGATA H, et al. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot-and-humid condition[J].Plant Production Science,2005,8(2):109-114.
[53]何永明,刘遂飞,雷抒情. 水稻花药开裂前茉莉酸水平及信号途径相关基因表达的动态变化[J].江西农业大学学报,2018,40(3):429-434.
[54]SONG S Y, CHEN Y, LIU L, et al. OsFTIP7 determines auxin-mediated anther dehiscence in rice.[J].Nature plants,2018,4(7):495-504.
[55]JAGADISH S, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza Sativa L.)[J].Journal of Experimental Botany,2009,61(1):43-156.
[56]MATSUI T, OMASA K, HORIE T. High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice (Oryza sativa L.)[J].Plant Production Science,2000,3(3):430-434.
[57]DENG F, ZENG Y L, LI Q P, et al. Decreased anther dehiscence contributes to a lower fertilization rate of rice subjected to shading stress[J].Field Crops Research,2021,273:108291.
[58]SELINSKI J, SCHEIBE R. Pollen tube growth: where does the energy come from?[J].Plant Signaling & Behavior,2014,9(12):977200.
[59]ZHANG C X, LI G Y, CHEN T T, et al. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J].Rice,2018,11(1):14.
[60]陈士强,王忠,刘满希,等. 水稻花粉萌发及花粉管生长动态[J].中国水稻科学,2007,21(5):513-517.
[61]KREBS A, GOLDIE K, HOENGER A. Structural rearrangements in tubulin following microtubule formation[J].EMBO Reports,2005,6(3):227-232.
[62]SANTIAGO J P, SHARKEY T D. Pollen development at high temperature and role of carbon and nitrogen metabolites[J].Plant,Cell & Environment,2019,42(10):2759-2775.
[63]杜兵帅,胡海文,曹庆芹,等. 钙离子对青杄花粉萌发和花粉管伸长的影响[J].电子显微学报,2018,37(6):627-636.
[64]于晓俊,曹绍玉,董玉梅,等. 钙结合蛋白对花粉生长发育调控研究进展[J].西北植物学报,2016,36(10):2121-2127.
[65]PAN Y J, CHAI X, GAO Q, et al. Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+ channel activities[J].Developmental Cell,2019,48(5):710-725.
[66]WANG X H, TENG Y, WANG Q L, et al. Imaging of dynamic secretory vesicles in living pollen tubes of picea meyeri using evanescent wave microscopy[J].Plant Physiology,2006,141(4):591-603.
[67]YAN C L, WANG J B, LI R Q. Effect of heat stress on calcium ultrastructural distribution in pepper anther[J].Environmental & Experimental Botany,2002,48(2):161-168.
[68]叶俊钗,肖轲,姚家玲. 应用水稻花粉离体萌发体系观察花粉管内微丝分布[J].植物科学学报,2011,29(2):200-205.
[69]PARROTTA L, FALERI C, CRESTI M, et al. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes[J].Planta,2016,243(1):43-63.
[70]DUAN Q, KITA D, JOHNSON E A, et al. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in arabidopsis[J].Nature Communications,2014,5(1):1-10.
[71]周永海,杨丽萍,马荣雪,等. 外源褪黑素对高温胁迫下甜瓜幼苗抗氧化特性及其相关基因表达的影响[J].西北农业学报,2020,29(5):745-751.
[72]HU L F,LIANG W Q,YIN C S, et al. Rice MADS3 regulates ROS homeostasis during late anther development[J].Plant Cell,2019,23(2):515-533.
[73]杨雲雲,陈鑫,陈启洲,等. 脱落酸对水稻种子萌发期耐高温胁迫的诱抗效应[J].华北农学报,2021,36(3):185-194.
[74]DJANAGUIRAMAN M, PERUMAL R, CIAMPITTI I A, et al. Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil[J].Plant, Cell & Environment,2018,41(5):993-1007.
[75]ZHAO Q, ZHOU L J, LIU J C, et al. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J].Plant Physiology and Biochemistry,2018,122:90-101.
[76]BAGHA S. The impact of chronic high temperatures on anther and pollen development in cultivated oryza species[D]. Canada Toronto:University of Toronto,2014.
[77]KAUSHAL N, AWASTHI R, GUPTA K, et al. Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers[J].Functional Plant Biology,2013,40(12):1334.
[78]刘航江,袁新捷,陈国兴. 高温胁迫下粳稻产量因子的变化以及对抗氧化酶活性的影响[J].云南农业大学学报(自然科学),2021,36(1):14-21.
[79]兰旭,顾正栋,丁艳菲,等. 花期高温胁迫对水稻颖花生理特性的影响[J].中国水稻科学,2016,30(6):637-646.
[80]高健,王亚梁,孙磊,等. 2,4-表油菜素内酯缓解水稻花期高温胁迫的生理机制[J].中国稻米,2019,25(3):70-74.
[81]马永战,邹琦,程炳嵩. 小麦的高温伤害与高温适应——Ⅱ.高温对麦苗游离脯氨酸含量的影响[J].山东农业大学学报,1986,17(4):1-8.
[82]PONGPRAYOON W, CHA U S, PICHAKUM A, et al. Proline profiles in aromatic rice cultivars photoautotrophically grown in responses to salt stress[J].International Journal of Botany,2008,4(3):41-49.
[83]苏小雨,高桐梅,李丰,等. 不同耐热基因型芝麻苗期对高温胁迫的生理响应机制[J].华北农学报,2021,36(6):96-105.
[84]张桂莲,张顺堂,肖浪涛,等. 花期高温胁迫对水稻花药生理特性及花粉性状的影响[J].作物学报,2013,39(1):177-183.
[85]苏晓帅,张宝华,刘佳静,等. 小麦SAPs家族分析及TaSAP1;1耐盐和低磷胁迫功能研究[J].植物遗传资源学报,2022,23(3):857-871.
[86]HUANG Y C, NIU C Y, YANG C R, et al. The heat-stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J].Plant Physiology,2016,17(2):1182-1199.
[87]张桂莲,张顺堂,萧浪涛,等. 水稻花药对高温胁迫的生理响应[J].植物生理学报,2013,49(9):923-928.
[88]WU C, CUI K H, WANG W C, et al. Heat-induced cytokinin transportation and degradation are associated with reduced panicle cytokinin expression and fewer spikelets per panicle in rice[J].Frontiers in Plant Science,2017,8:371.
[89]CHEN Y H, CHEN H Z, XIANG J, et al. Rice spikelet formation inhibition caused by decreased sugar utilization under high temperature is associated with brassinolide decomposition[J].Environmental and Experimental Botany,2021,190:104585.
[90]CHEN J, FEI K, ZHANG W, et al. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines[J].The Crop Journal,2021,9(1):11.
[91]TANG R S, ZHENG J C, JIN Z Q, et al. Possible correlation between high temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.)[J].Plant Growth Regulation,2008,54(1):37-43.
[92]曹云英,陈艳红,李卫振,等. 水稻减数分裂期幼穗激素、多胺和蛋白质对高温的响应[J].植物生理学报,2015,51(10):1687-1696.
[93]WASSMANN R, JAGADISH S V K, HEUER S, et al. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies[J].Advances in Agronomy,2009,101:101.
[94]TIAN X H, MATSUI T, LI S H, et al. Heat-induced floret sterility of hybrid rice (Oryza sativa L.) cultivars under humid and Low wind conditions in the field of Jianghan basin,China[J].Plant Production Science,2010,13(3):243-251.
[95]段骅,傅亮,剧成欣,等. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J].中国水稻科学,2013,27(6):591-602.
[96]杨军,陈小荣,朱昌兰,等. 氮肥和高温对早稻淦鑫203产量、SPAD值及可溶性糖含量的影响[J].江西农业大学学报,2015,37(5):759-764.
[97]杨军,陈小荣,朱昌兰,等. 氮肥和孕穗后期高温对两个早稻品种产量和生理特性的影响[J].中国水稻科学,2014,28(5):523-533.
[98]江晓东,华梦飞,胡凝,等. 不同水源灌溉对水稻高温热害影响的微气象学分析[J].中国农业气象,2019,40(4):260-268.
[99]段骅,俞正华,徐云姬,等. 灌溉方式对减轻水稻高温危害的作用[J].作物学报,2012,38(1):107-120.
[100]HUANG Y C,NIU C Y,YANG C R, et al. The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses[J].Plant Physiology,2016,2016:860.
[101]吴晨阳,陈丹,罗海伟,等. 外源硅对花期高温胁迫下杂交水稻授粉结实特性的影响[J].应用生态学报,2013,24(11):3113-3122.
[102]CHEN J, MIAO W, FEI K, et al. Jasmonates alleviate the harm of high-temperature stress during anthesis to stigma vitality of photothermosensitive genetic male sterile rice lines[J]. Frontiers in Plant Science,2021,12:634959.
[103]吴晨阳,马国辉,付义川,等. 优马归甲对水稻高温下结实率降低的减轻效应[J].中国生态农业学报,2011,19(6):1483-1485.
[104]王思瑶,田清源,张林安,等. 不同水稻花粉育性耐高温的差异比较研究[J].生命科学研究,2021,25(5):400-405.
[105]潘孝武,黎用朝,刘文强,等. 水稻资源开花期耐热性的全基因组关联分析[J].植物遗传资源学报,2021,22(2):407-415.
[106]KOIKE S, YAMAGUCHI T, OHMORI S, et al. Cleistogamy decreases the effect of high temperature stress at flowering in rice[J].Plant Production Science,2015,18(2):111-117.
[107]宋有金,吴超,李子煜,等. 水稻产量对生殖生长阶段不同时期高温的响应差异[J].中国水稻科学,2021,35(2):177-186.
[108]吴思佳,李仁英,谢晓金,等抽穗期高温对水稻叶片光合特性、叶绿素荧光特性和产量构成因素的影响[J].南方农业学报,2021,52(1):20-27.
[109]王亚梁,张玉屏,朱德峰,等. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响[J].作物学报,2016,42(9):1402-1410.
[110]陈建珍,闫浩亮,刘科,等. 大穗型水稻品种抽穗开花期遭遇高温后的结实表现[J].中国农业气象,2018,39(2):84-91.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(01):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(01):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(01):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(01):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(01):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(01):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(01):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(01):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(01):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
[11]张斌,杨昕霞,袁志辉.水稻响应热胁迫核心基因的筛选与鉴定[J].江苏农业学报,2021,(04):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]
ZHANG Bin,YANG Xin-xia,YUAN Zhi-hui.Screening and identification of core genes responding to heat stress in rice[J].,2021,(01):817.[doi:doi:10.3969/j.issn.1000-4440.2021.04.001]