参考文献/References:
[1]董玉妹,张美倩,沈慧,等. 植食性昆虫唾液效应子和激发子的研究进展[J]. 昆虫学报, 2021, 64(8): 982-997.
[2]COHEN C A. Extra-oral digestion in predaceous terrestrial arthropoda[J]. Annual Review of Entomology,1995, 40: 85-103.
[3]JI R, YE W F, CHEN H D, et al. A salivary endo-β-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice[J]. Plant Physiology, 2017, 173:1920-1932.
[4]HUANG H J, CUI J R, XIA X, et al. Salivary DNase II from Laodelphax striatellus acts as an effector that suppresses plant defence[J]. New Phytologist ,2019,224(2): 860-874.
[5]FU J M, SHI Y, WANG L H, et al. Planthopper-secreted salivary calmodulin acts as an effector for defense responses in rice[J]. Frontiers in Plant Science, 2022,13: 841378.
[6]TIAN T, JI R, FU J M, et al. A salivary calcium-binding protein from Laodelphax striatellus acts as an effector that suppresses defense in rice[J]. Pest Management Science,2021, 77(5):2272-2281.
[7]YE W F, YU H X, JIAN Y K, et al. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice[J]. Scientific Reports,2017,7: 40498.
[8]JI R, FU J M, SHI Y, et al. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses[J]. New Phytologist,2021, 232: 802-817.
[9]WANG N, ZHAO P Z, MA Y H, et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance[J]. Philosophical Transactions of the Royal Society B,2019, 374(1767): 20180313
[10]XU H X, QIAN L X, WANG X W, et al. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway[J]. Proceedings of the National Academy of Sciences,2019,116(2): 490-495.
[11]DU H, XU H X, WANG F, et al. Armet from whitefly saliva acts as an effector to suppress plant defenses by targeting tobacco cystatin[J]. New Phytologist,2022, 234(5):1848-1862.
[12]HUANG H J, LIU C W, HUANG X H, et al. Screening and functional analyses of Nilaparvata lugens salivary proteome[J]. Journal of Proteome Research, 2016, 15:1883.
[13]SGAWA K. The rice brown planthopper: feeding physiology and host plant interactions[J]. Annual Review of Entomology, 2003, 27(1):49-73.
[14]HUANG H J, LIU C W, CAI Y F, et al. A salivary sheath protein essential for the interaction of the brown planthopper with rice plants[J]. Insect Biochemistry and Molecular Biology, 2015, 66: 77-87.
[15]SHANGGUAN X X, ZHANG J, LIU B F, et al. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants[J]. Plant Physiology, 2018,176(1): 552-565.
[16]HUO Y, ZHAO J, MENG X Y, et al. Laodelphax striatellus saliva mucin enables the formation of stylet sheathes to facilitate its feeding and rice stripe virus transmission [J]. Pest Management Science, 2022,78(8):3498-3507.
[17]鞠佳菲,孙洋,刘宝生,等. 一种制备稻飞虱唾液鞘扫描电镜样品的方法:ZL201811514920.X[P]. 2021-06-01.
[18]HUANG H J, LU J B, LI Q, et al. Combined transcriptomic/proteomic analysis of salivary gland and secreted saliva in three planthopper species[J]. Journal of Proteomics, 2018, 172: 25-35.
相似文献/References:
[1]张青,陆明星,祝树德.灰飞虱2种热激蛋白基因Hsp70的克隆、分析[J].江苏农业学报,2015,(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2015.06.010]
ZHANG Qing,LU Ming-xing,ZHU Shu-de.Cloning,sequence analysis and expression profiling of two heat shock protein 70 genes in small brown plant hopper,Laodelphax striatellus (Hemiptera:Delphacidae)[J].,2015,(01):1257.[doi:doi:10.3969/j.issn.1000-4440.2015.06.010]
[2]张梦龙,岳红亮,程新杰,等.水稻条纹叶枯病抗性机制研究进展[J].江苏农业学报,2021,(06):1608.[doi:doi:10.3969/j.issn.1000-4440.2021.05.031]
ZHANG Meng-long,YUE Hong-liang,CHENG Xin-jie,et al.Research progress on resistance mechanism of rice stripe disease[J].,2021,(01):1608.[doi:doi:10.3969/j.issn.1000-4440.2021.05.031]
[3]王利华,张玉,郑州廷,等.灰飞虱脂肪酶LsLPS的原核表达及Ni-NTA纯化[J].江苏农业学报,2022,38(03):611.[doi:doi:10.3969/j.issn.1000-4440.2022.03.005]
WANG Li-hua,ZHANG Yu,ZHENG Zhou-ting,et al.Prokaryotic expression and Ni-NTA purification of lipase LsLPS from Laodelphax striatellus[J].,2022,38(01):611.[doi:doi:10.3969/j.issn.1000-4440.2022.03.005]