参考文献/References:
[1]周桑扬,杨凯,吴晓芙,等. 人工湿地植物去除废水中重金属的作用机制研究进展[J]. 湿地科学, 2016, 14(5): 717-724.
[2]李峰平,魏红阳,马喆,等. 人工湿地植物的选择及植物净化污水作用研究进展[J]. 湿地科学, 2017, 15(6): 849-854.
[3]林芳芳,从鑫,黄锦楼,等. 人工湿地植物对重金属铅的抗性[J]. 环境工程学报, 2014, 8(6): 2329-2334.
[4]马贵. 湿地植物芦苇对重金属 Cd 富集能力的研究[J]. 化学工程与装备, 2016(9): 42-43.
[5]YADAV B K, SIEBEL M A, VAN BRUGGEN J J A. Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula[J]. Clean-Soil, Air, Water, 2011, 39(5): 467-474.
[6]YANG J, ZHENG G, YANG J, et al. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological Regimes[J]. Ecological Engineering, 2017, 107: 56-64.
[7]王倩. 人工湿地植物根系泌氧影响污染物去除的机制研究[D]. 济南:山东大学, 2015.
[8]毛凌晨,叶华. 氧化还原电位对土壤中重金属环境行为的影响研究进展[J]. 环境科学研究, 2018, 31(10): 1669-1676.
[9]CHATTERJEE S, DATTA S, MALLICK P H, et al. Use of wetland plants in bioaccumulation of heavy metals[M]. Berlin, Heidelberg: Springer, 2013: 117-139.
[10]李光辉,何长欢,刘建国. 不同湿地植物的根系泌氧作用与重金属吸收[J]. 水资源保护, 2010, 26(1): 17-20.
[11]葛星延. 几种漂浮植物对铅尾矿渗出液的耐性及修复潜力研究[D]. 南昌:江西财经大学, 2019.
[12]ULLAH A, HENG S, MUNIS M F H, et al. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review[J]. Environmental and Experimental Botany, 2015, 117: 28-40.
[13]XIANG Z, ZHAO M, OGBODO U S. Accumulation of urban insect pests in China: 50 years’ observations on camphor tree (Cinnamomum camphora): 4[J]. Sustainability, 2020, 12(4): 1582.
[14]CLAY L, PICHTEL J. Treatment of simulated oil and gas produced water via pilot-scale rhizofiltration and constructed wetlands[J]. International Journal of Environmental Research, 2019, 13(1): 185-198.
[15]谷兆萍. 复合污染下浮萍(Lemna minor L.)对重金属吸收、富集特征和机理[D]. 昆明:昆明理工大学, 2011.
[16]UPADHYAY A K, SINGH N K, BANKOTI N S, et al. Designing and construction of simulated constructed wetland for treatment of sewage containing metals[J]. Environmental Technology, 2017, 38(21): 2691-2699.
[17]朱加宾. 人工湿地对重金属以及有害微生物去除效果的研究[D]. 南京:南京农业大学, 2018.
[18]LESAGE E, ROUSSEAU D P L, MEERS E, et al. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium[J]. Science of the Total Environment, 2007, 380(1/3): 102-115.
[19]LIU J G, LI G H, SHAO W C, et al. Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species[J]. Pedosphere, 2010, 20(1): 96-103.
[20]ALEMU A, GABBIYE N, LEMMA B. Application of integrated local plant species and vesicular basalt rock for the treatment of chromium in tannery wastewater in a horizontal subsurface flow wetland system[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103940.
[21]GRISEY E, LAFFRAY X, CONTOZ O, et al. The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France)[J]. Water Air and Soil Pollution, 2012, 223(4): 1723-1741.
[22]ARIVOLI A, MOHANRAJ R, SEENIVASAN R. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater[J]. Environment Science and Pollution Research, 2015, 22(17): 13336-13343.
[23]LIU J, DONG Y, XU H, et al. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland[J]. Journal of Hazardous Materials, 2007, 147(3): 947-953.
[24]RANIERI E. Chromium and nickel control in full- and small-scale subsuperficial flow constructed wetlands[J]. Soil and Sediment Contamination: An International Journal, 2012, 21(7): 802-814.
[25]BAKHSHOODEH R, ALAVI N, MOHAMMADI A S, et al. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland[J]. Environment Science and Pollution Research, 2016, 23(12): 12384-12391.
[26]BAKHSHOODEH R, ALAVI N, PAYDARY P. Composting plant leachate treatment by a pilot-scale, three-stage, horizontal flow constructed wetland in central Iran[J]. Environmental Science and Pollution Research, 2017, 24(30): 23803-23814.
[27]XIAO H, ZHANG S, ZHAI J, et al. Retention and distribution of Cu, Pb, Cr, and Zn in a full-scale hybrid constructed wetland receiving municipal sewage[J]. Water Science and Technology, 2013, 67(10): 2257-2264.
[28]唐莹莹,桂亚男,王友保,等. 吊兰对水体铅污染的耐性和吸收特性研究[J]. 上海交通大学学报(农业科学版), 2018, 36(4): 89-94.
[29]李志刚,黄海连,李素丽,等. 铬对人工湿地净化生活污水的影响及铬积累规律[J]. 农业环境科学学报, 2010, 29(7): 1362-1368.
[30]李志刚,杨幽,安芮辰,等. 铬污染人工湿地薏米对铬的积累和分布[J]. 广西植物, 2018, 38(6): 681-686.
[31]司万童,冯磊,杨峰,等. 人工湿地去污对灌溉农田土壤重金属污染的修复[J]. 兰州大学学报(自然科学版), 2012, 48(5): 85-88,93.
[32]张弦,王宇晖,赵晓祥,等. 微电场人工湿地系统对水中重金属Cd Zn和Cu去除效果的研究[J]. 农业环境科学学报, 2018, 37(6): 1211-1218.
[33]KIISKILA J D, SARKAR D, FEUERSTEIN K A, et al. A preliminary study to design a floating treatment wetland for remediating acid mine drainage-impacted water using vetiver grass (Chrysopogon zizanioides)[J]. Environmental Science and Pollution Research, 2017, 24(36): 27985-27993.
[34]LI S, HUANG H, LI Z, et al. Chromium removal capability and photosynthetic characteristics of Cyperus alternifolius and Coix lacrymajobi L. in vertical flow constructed wetland treated with hexavalent chromium bearing domestic sewage[J]. Water Science and Technology, 2017, 76(8): 2203-2212.
[35]SINGH M, SRIVASTAVA R K. Feasibility of using tuberose (P.tuberosa L.) in horizontal subsurface flow constructed wetland for heavy metal removal from domestic wastewater[J]. Environmental Progress & Sustainable Energy, 2016, 35(1): 125-132.
[36]SONG X, YAN D, LIU Z, et al. Performance of laboratory-scale constructed wetlands coupled with micro-electric field for heavy metal-contaminating wastewater treatment[J]. Ecological Engineering, 2011, 37(12): 2061-2065.
[37]SUKUMARAN D. Phytoremediation of heavy metals from industrial effluent using constructed wetland technology: 5[J]. Applied Ecology and Environmental Sciences, 2013, 1(5): 92-97.
[38]GARCA-VALERO A, MARTNEZ-MARTNEZ S, FAZ , et al. Treatment of wastewater from the tannery industry in a constructed wetland planted with Phragmites australis[J]. Agronomy, 2020, 10(2): 176.
[39]CHANDRA R, YADAV S, BHARAGAVA R N, et al. Bacterial pretreatment enhances removal of heavy metals during treatment of post-methanated distillery effluent by Typha angustata L.[J]. Journal of Environmental Management, 2008, 88(4): 1016-1024.
[40]SHAHID M J, ALI S, SHABIR G, et al. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water[J]. Chemosphere, 2020, 243:125353.
[41]ISHAQ H K, FARID M, ZUBAIR M, et al. Efficacy of Lemna minor and Typha latifolia for the treatment of textile industry wastewater in a constructed wetland under citric acid amendment: a lab scale study[J]. Chemosphere, 2021, 283: 131107.
[42]AFZAL M, REHMAN K, SHABIR G, et al. Large-scale remediation of oil-contaminated water using floating treatment wetlands[J]. NPJ Clean Water, 2019, 2(1):3.
[43]KIISKILA J D, SARKAR D, PANJA S, et al. Remediation of acid mine drainage-impacted water by vetiver grass (Chrysopogon zizanioides): a multiscale long-term study[J]. Ecological Engineering, 2019, 129: 97-108.
[44]RAI U N, UPADHYAY A K, SINGH N K, et al. Seasonal applicability of horizontal sub-surface flow constructed wetland for trace elements and nutrient removal from urban wastes to conserve Ganga River water quality at Haridwar, India[J]. Ecological Engineering, 2015, 81: 115-122.
[45]LI J, YU H, LUAN Y. Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-polluted water: 12[J]. International Journal of Environmental Research and Public Health, 2015, 12(12): 14958-14973.
[46]ROSENBERG M S, ADAMS D C, GUREVITCH J. Metawin: statistical software for meta-analysis with resampling tests[M]. Sunderland: Sinauer Associates, 1997:1-65.
[47]SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review[J]. Chemosphere, 2017, 178: 513-533.
[48]付永臻,游少鸿,杨笑宇,等. 铬超富集植物李氏禾的研究进展[J]. 安徽农业科学, 2021, 49(2): 12-15,18.
[49]韩文,陈海珊,袁治豪,等. 一株李氏禾内生细菌去除Cr(VI)的特性[J]. 广西植物, 2019, 39(6): 729-736.
[50]ISMAEL M A, ELYAMINE A M, MOUSSA M G, et al. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers[J]. Metallomics, 2019, 11(2): 255-277.
[51]LU H, ZHUANG P, LI Z, et al. Contrasting effects of silicates on cadmium uptake by three dicotyledonous crops grown in contaminated soil[J]. Environmental Science and Pollution Research, 2014, 21(16): 9921-9930.
[52]KHANNA K, JAMWAL V L, KOHLI S K, et al. Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression[J]. Chemosphere, 2019, 217: 463-474.
[53]刘翠,牟凤利,王吉秀,等. 低分子量有机酸对植物吸收和累积重金属的影响综述[J]. 江苏农业科学, 2021, 49(8): 38-43.
[54]薛博晗,李娜,宋桂龙,等. 外源柠檬酸、苹果酸和草酸对披碱草镉耐受及富集的影响[J]. 草业学报, 2018, 27(6): 128-136.
[55]FAHR M, LAPLAZE L, BENDAOU N, et al. Effect of lead on root growth[J]. Frontiers in Plant Science, 2013, 4: 175.
[56]YADAV S, CHANDRA R. Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India[J]. Environmental Earth Sciences, 2011, 62(6): 1235-1243.
[57]SUN H, WANG Z, GAO P, et al. Selection of aquatic plants for phytoremediation of heavy metal in electroplate wastewater[J]. Acta Physiologiae Plantarum, 2013, 35(2): 355-364.
[58]谢换换,叶志鸿. 湿地植物根形态结构和泌氧与盐和重金属吸收、积累、耐性关系的研究进展[J]. 生态学杂志, 2021, 40(3): 864-875.
[59]乔旭,王沛芳,郑莎莎,等. 水生植物去除重金属机制及生理响应研究综述[J]. 长江科学院院报, 2015, 32(5): 15-20.
[60]段德超,于明革,施积炎. 植物对铅的吸收、转运、累积和解毒机制研究进展[J]. 应用生态学报, 2014, 25(1): 287-296.
[61]尹炜,李培军,叶闽,等. 复合潜流人工湿地处理城市地表径流研究[J]. 中国给水排水, 2006(1): 5-8.
相似文献/References:
[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):53.
ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2005,(06):53.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):53.
ZHANG Hui,ZHANG Xiao jing.三才期刊采编系统文章正在整理中…[J].,2006,(06):53.
[3]许仙菊,张永春.植物耐低磷胁迫的根系适应性机制研究进展[J].江苏农业学报,2018,(06):1425.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
XU Xian-ju,ZHANG Yong-chun.Research progress on the root adaptation mechanism of plants under low phosphorus stress[J].,2018,(06):1425.[doi:doi:10.3969/j.issn.1000-4440.2018.06.031]
[4]郭广君,王述彬,刘金兵,等.植物抗黄瓜花叶病毒基因研究进展[J].江苏农业学报,2018,(06):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
GUO Guang-jun,WANG Shu-bin,LIU Jin-bing,et al.Advances in related resistance genes of plant to cucumber mosaic virus[J].,2018,(06):1430.[doi:doi:10.3969/j.issn.1000-4440.2018.06.032]
[5]徐海,宋波,顾宗福,等.植物耐热机理研究进展[J].江苏农业学报,2020,(01):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
XU Hai,SONG Bo,GU Zong-fu,et al.Advances in heat tolerance mechanisms of plants[J].,2020,(06):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
[6]蔡张杰,崔丽娟,李晶,等.低温条件下人工湿地氨氧化微生物的群落结构特征[J].江苏农业学报,2020,(02):373.[doi:doi:10.3969/j.issn.1000-4440.2020.02.017]
CAI Zhang-jie,CUI Li-juan,LI Jing,et al.Community structure characteristics of ammonia-oxidizing microorganisms in constructed wetland at low temperature[J].,2020,(06):373.[doi:doi:10.3969/j.issn.1000-4440.2020.02.017]
[7]徐彤,王英琪,李渊,等.小分子热激蛋白在植物应对高温胁迫中的作用[J].江苏农业学报,2024,(07):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]
XU Tong,WANG Yingqi,LI Yuan,et al.Role of small molecule heat shock proteins in plants’ response to high temperature stress[J].,2024,(06):1343.[doi:doi:10.3969/j.issn.1000-4440.2024.07.021]