[1]沈川,李夏.植物SWEET基因家族促进病害发生的研究进展[J].江苏农业学报,2022,38(05):1411-1420.[doi:doi:10.3969/j.issn.1000-4440.2022.05.029]
 SHEN Chuan,LI Xia.Advances in the study of plant SWEET gene family for disease development[J].,2022,38(05):1411-1420.[doi:doi:10.3969/j.issn.1000-4440.2022.05.029]
点击复制

植物SWEET基因家族促进病害发生的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1411-1420
栏目:
综述
出版日期:
2022-10-31

文章信息/Info

Title:
Advances in the study of plant SWEET gene family for disease development
作者:
沈川1李夏2
(1.安康学院陕南生态经济研究中心,陕西安康725000;2.安康市农业科学研究院,陕西安康725000)
Author(s):
SHEN Chuan1LI Xia2
(1.Shaannan Eco-economy Research Center, Ankang University, Ankang 725000, China;2.Ankang Academy of Agricultural Sciences, Ankang 725000, China)
关键词:
SWEET糖转运蛋白植物-微生物互作基因工程生物胁迫
Keywords:
SWEETsugar transporterplant-microbe interactionsgenetic engineeringbiotic stress
分类号:
S432.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.029
文献标志码:
A
摘要:
糖的运输和分配在调节植物的生长发育和应对生物和非生物胁迫中起着关键作用。在植物-病原菌相互作用过程中,存在着对糖的竞争,这种竞争由膜运输体控制且对植物和病原互作的结果具有决定性作用。SWEET糖转运蛋白是细胞外病原菌的靶向目标,病原菌通过修改其表达水平以获得生长所需的糖分营养。本文阐述了植物中SWEET家族的分布和结构,归纳总结了SWEET在细菌、真菌和卵菌入侵寄主植物过程中所扮演的角色,最后展望了通过基因工程手段操纵SWEET基因的表达对于开发抗病栽培品种的前景。
Abstract:
Sugar transport and distribution play a key role in regulating plant development and responding to biotic and abiotic stresses. In the process of plant-pathogen interactions, there is competition for sugars, which is controlled by membrane transporters and is decisive for the outcome of plant-pathogen interactions. SWEET sugar transporters are targeted by extracellular pathogens, which modify their expression levels to obtain sugar nutrients for growth. This paper firstly described the distribution and structure of the SWEET family in plants. Secondly, it summarized the role of SWEET in the invasion of host plants by bacteria, fungi and oomycetes. Finally, the paper also looked at the prospects of manipulating SWEET expression by means of genetic engineering for the development of disease-resistant cultivars.

参考文献/References:

[1]CHAKRABORTY S, NEWTON A C. Climate change, plant diseases and food security: an overview[J]. Plant Pathology, 2011, 60(1): 2-14.
[2]BOLLER T, FELIX G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J]. Annu Rev Plant Biol, 2009, 60: 379-406.
[3]SADDHE A A, MANUKA R, PENNA S. Plant sugars: Homeostasis and transport under abiotic stress in plants[J]. Physiol Plant, 2021, 171(4): 739-755.
[4]DENG D, YAN N. GLUT, SGLT, and SWEET: Structural and mechanistic investigations of the glucose transporters[J]. Protein Sci, 2016, 25(3): 546-558.
[5]JI J, YANG L, FANG Z, et al. Plant SWEET family of sugar transporters: structure, evolution and biological functions[J]. Biomolecules, 2022, 12(2): 205.
[6]CHEN L Q, HOU B H, LALONDE S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532.
[7]BOLOURI M M R, VAN DEN ENDE W. Sugars and plant innate immunity[J]. Journal of Experimental Botany, 2012, 63(11): 3989-3998.
[8]TROUVELOT S, HLOIR M C, POINSSOT B, et al. Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays[J]. Front Plant Sci, 2014, 5: 592.
[9]YUAN M, WANG S. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms[J]. Mol Plant, 2013, 6(3): 665-674.
[10]CHONG J, PIRON M C, MEYER S, et al. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany, 2014, 65(22): 6589-6601.
[11]HU B, WU H, HUANG W, et al. SWEET gene family in Medicago truncatula: genome-wide identification, expression and substrate specificity analysis[J]. Plants, 2019, 8(9): 338.
[12]CAO Y, LIU W, ZHAO Q, et al. Integrative analysis reveals evolutionary patterns and potential functions of SWEET transporters in Euphorbiaceae[J]. Int J Biol Macromol, 2019, 139: 1-11.
[13]WEI X, LIU F, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Front Plant Sci, 2014, 5: 569.
[14]YAO T, XIE R, ZHOU Y, et al. Genome-Wide identification of SWEET gene family and its response to abiotic stresses in Valencia sweet orange[J]. Plant Molecular Biology Reporter, 2021, 39(3): 546-556.
[15]LI X, SI W, QIN Q, et al. Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages[J]. Sci Rep, 2018, 8(1): 13440.
[16]YIN Q, ZHU L, DU P, et al. Comprehensive analysis of SWEET family genes in Eucalyptus (Eucalyptus grandis)[J]. Biotechnology & Biotechnological Equipment, 2020, 34(1): 595-604.
[17]FENG C Y, HAN J X, HAN X X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J]. Gene, 2015, 573: 261-272.
[18]PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC Genomics, 2015, 16(1): 520.
[19]SOSSO D, LUO D, LI Q, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nat Genet, 2015, 47: 1489-1493.
[20]MANCK-GOTZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J]. Front Plant Sci, 2016, 7: 487.
[21]MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnol Biofuels, 2016, 9: 127.
[22]LI W, REN Z, WANG Z, et al. Evolution and stress responses of Gossypium hirsutum SWEET genes[J]. Int J Mol Sci, 2018, 19(3): 769.
[23]HU LP, ZHANG F, SONG SH, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J]. J Integr Agric, 2017, 16: 1486-1501.
[24]LI J, QIN M, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri)[J]. Plant Cell Physiol, 2017, 58: 839-850.
[25]MIAO H, SUN P, LIU Q, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana[J]. Scientific Reports, 2017, 7(1): 1-15.
[26]SUGIYAMA A, SAIDA Y, YOSHIMIZU M, et al. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus[J]. Plant Cell Physiol, 2017, 58: 298-306.
[27]SUI J L, XIAO X H, QI J Y, et al. The SWEET gene family in Hevea brasiliensis-its evolution and expression compared with four other plant species[J]. FEBS Open Bio, 2017, 7(12): 1943-1959.
[28]QIN J X, JIANG Y J, LU Y Z, et al. Genome-wide identification and transcriptome profiling reveal great expansion of SWEET gene family and their wide-spread responses to abiotic stress in wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture, 2020, 19(7): 1704-1720.
[29]GUO C, LI H, XIA X, et al. Functional and evolution characterization of SWEET sugar transporters in Ananas comosus[J]. Biochem Biophys Res Commun, 2018, 496: 407-414.
[30]HU W, HUA X, ZHANG Q, et al. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics[J]. BMC Plant Biol, 2018, 18: 270.
[31]MIAO L, LV Y, KONG L, et al. Genome-wide identification, phylogeny, evolution, and expression patterns of MtN3/saliva/SWEET genes and functional analysis of BcNS in Brassica rapa[J]. BMC Genom, 2018, 19:174.
[32]JIANG L, SONG C, ZHU X, et al. SWEET Transporters and the potential functions of these sequences in tea (Camellia sinensis)[J]. Front Genet, 2021, 12: 655843.
[33]DOIDY J, VIDAL U, LEMOINE R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisum sativum[J]. PLoS One,2019, 14: e0223173.
[34]LIU H T, LYU W Y, TIAN S H, et al. The SWEET family genes in strawberry: identification and expression profiling during fruit development[J]. South Afr J Bot, 2019, 125: 176-187.
[35]XIE H, WANG D, QIN Y, et al. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J]. BMC Plant Biol, 2019, 19: 499.
[36]ZHANG W, WANG S, YU F, et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and club root disease responses[J]. BMC Genom, 2019, 20:93.
[37]GENG Y, WU M, ZHANG C. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba mill[J]. Front Plant Sci, 2020, 11: 1081.
[38]JIANG S, BALAN B, ASSIS RDA, et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricola pv. juglandis infection[J]. Int J Mol Sci, 2020, 21: 1251.
[39]ZHANG L, WANG L, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J]. Tree Physiol, 2021, 41(5): 882-899.
[40]ZHANG R, NIU K, MA H. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses[J]. DNA Cell Biol, 2020, 39: 1606-1620.
[41]CAO Y, LIU W, ZHAO Q, et al. Integrative analysis reveals evolutionary patterns and potential functions of SWEET transporters in Euphorbiaceae[J]. Int J Biol Macromol, 2019, 139: 1-11.
[42]LI J, QIN M, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear (Pyrus bretschneideri)[J]. Plant Cell Physiol, 2017, 58: 839-850.
[43]ZHANG X, WANG S, REN Y, et al. Identification, analysis and gene cloning of the SWEET gene family provide insights into sugar transport in pomegranate (Punica granatum)[J]. International Journal of Molecular Sciences, 2022, 23(5): 2471.
[44]DU Y, LI W, GENG J, et al. Genome-wide identification of the SWEET gene family in Phaseolus vulgaris L. and their patterns of expression under abiotic stress[J]. Journal of Plant Interactions, 2022, 17(1): 390-403.
[45]LIN Q, ZHONG Q, ZHANG Z. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening[J]. Peer J, 2021, 9: e11404.
[46]WANG T, SONG Z, MENG W, et al. Identification, characterization, and expression of the SWEET gene family in Phalaenopsis equestris and Dendrobium officinale[J]. Biologia Plantarum, 2018, 62(1): 24-32.
[47]FILYUSHIN M A, KOCHIEVA E Z, SHCHENNIKOVA A V, et al. SWEET uniporter gene family expression profile in the pitcher development in the carnivorous plant nepenthes sp.[J]. Russ J Genet, 2019, 55: 692-700.
[48]HUANG D M, CHEN Y, LIU X, et al. Genome-wide identification and expression analysis of the SWEET gene family in daylily (Hemerocallis fulva) and functional analysis of HfSWEET17 in response to cold stress[J]. BMC Plant Biol, 2022, 22(1): 211.
[49]JIAN H, LU K, YANG B, et al. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.)[J]. Frontiers in Plant Science, 2016, 7: 1464.
[50]申长卫,袁敬平. 南瓜SWEET蛋白家族的全基因组鉴定与进化分析[J]. 广西植物, 2021, 41(1): 40-54.
[51]李新然,张智俊,喻珮瑶,等. 毛竹SWEET基因家族的全基因组鉴定与分析[J]. 生物信息学, 2020, 18(4): 236-246.
[52]XUAN C, LAN G, SI F, et al. Systematic genome-wide study and expression analysis of SWEET gene family: Sugar transporter family contributes to biotic and abiotic stimuli in watermelon[J]. International Journal of Molecular Sciences, 2021, 22(16): 8407.
[53]LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J]. Nature, 2014, 508: 546.
[54]LE HIR R, SPINNER L, KLEMENS PA, et al. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis[J]. Mol Plant, 2015, 8: 1687-1690.
[55]GUO W J, NAGY R, CHEN H Y, et al. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves[J]. Plant Physiol,2014, 164: 777-789.
[56]CHEN L Q, QU X Q, HOU B H, et al. Sucrose efflux mediated by sweet proteins as a key step for phloem transport[J]. Science, 2012, 335: 207-211.
[57]ANTONY G, ZHOU J, HUANG S, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3[J]. Plant Cell, 2010, 22: 3864-3876.
[58]WANG J, YAN C, LI Y, et al. Crystal structure of a bacterial homologue of SWEET transporters[J]. Cell Res, 2014, 24: 1486-1489.
[59]GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease[J]. Molecular Plant Pathology, 2018, 19(9): 2149-2161.
[60]COHN M, BART RS, SHYBUT M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activatorlike effector-mediated induction of a SWEET sugar transporter in cassava[J]. Mol Plant Microbe Interact, 2014, 27: 1186-1198.
[61]STREUBEL J, PESCE C, HUTIN M, et al. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae[J]. New Phytol, 2013, 200: 808-819.
[62]BLANVILLAIN-BAUFUM S, RESCHKE M, SOL M, et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET 14-inducing TAL effectors[J]. Plant Biotechnology Journal, 2017, 15(3): 306-317.
[63]EOM J S, CHEN L Q, SOSSO D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Current Opinion in Plant Biology, 2015, 2: 53-62.
[64]WU L B, EOM J S, ISODA R, et al. OsSWEET11b, a potential sixth leaf blight susceptibility gene involved in sugar transport-dependent male fertility[J]. New Phytol, 2022, 234(3): 975-989.
[65]HU Y, ZHANG J, JIA H, et al. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease[J]. Proc Natl Acad Sci USA, 2014, 111: 521-529.
[66]COX K L, MENG F, WILKINS K E, et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton[J]. Nat Commun, 2017, 8: 1-14.
[67]LIU Q, YUAN M, ZHOU Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J]. Plant Cell Environ, 2011, 34: 1958-1969.
[68]BEZRUTCZYK M, YANG J, EOM J S, et al. Sugar flux and signaling in plant-microbe interactions[J]. The Plant Journal, 2018, 93: 675-685.
[69]CARPENTER S C D, MISHRA P, GHOSHAL C, et al. A Strain of an emerging Indian Xanthomonas oryzae pv. oryzae pathotype defeats the rice bacterial blight resistance gene xa13 without inducing a clade Ⅲ SWEET gene and is nearly identical to a recent Thai isolate[J]. Frontiers in Microbiology, 2018, 9: 2703.
[70]OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37: 1344-1350.
[71]XU Z, XU X, GONG Q, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice[J]. Molecular Plant, 2019, 12(11): 1434-1446.
[72]KIM Y A, MOON H, PARK C J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae[J]. Rice, 2019, 12(1): 1-13.
[73]WALEROWSKI P, GüNDEL A, YAHAYA N, et al. Club root disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls[J]. The Plant Cell, 2018, 30(12): 3058-3073.
[74]SUN M, ZHANG Z, REN Z, et al. The GhSWEET42 glucose transporter participates in Verticillium dahliae infection in cotton[J]. Front Plant Sci, 2021, 12: 690754.
[75]YANG B, SUGIO A, WHITE F F. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice[J]. Proc Natl Acad Sci USA, 2006, 103(27): 10503-10508.
[76]CHU Z, FU B, YANG H, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theor Appl Genet, 2006, 112(3): 455-461.
[77]LI T, HUANG S, ZHOU J, et al. Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice[J]. Molecular Plant, 2013, 6(3): 781-789.
[78]LI Y, WANG Y, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Front Plant Sci, 2017, 8: 197.
[79]CHEN H Y, HUH J H, YU Y C, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J]. Plant J, 2015, 83: 1046-1058.
[80]ANDARGIE M, LI J. Expression of the Arabidopsis SWEET genes during rice false smut infection in the transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose[J]. J Plant Biochem Biotechnol, 2019, 28: 509-520.
[81]LI H, LI X, XUAN Y, et al. Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa[J]. Frontiers in Plant Science, 2018, 9: 207.
[82]WANG L, YAO L, HAO X, et al. Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis[J]. Plant Molecular Biology, 2018, 96(6): 577-592.
[83]ASAI Y, KOBAYASHI Y, KOBAYASHI I. Increased expression of the tomato SISWEET15 gene during grey mold infection and the possible involvement of the sugar efflux to apoplasm in the disease susceptibility[J]. J Plant Pathol Microbiol, 2016, 7: 329.
[84]GAO Y, WANG Z Y, KUMAR V, et al. Genome-wide identification of the SWEET gene family in wheat[J]. Gene, 2018, 642: 284-292.
[85]BREIA R, CONDE A, PIMENTEL D, et al. VvSWEET7 is a mono-and disaccharide transporter up-regulated in response to Botrytis cinerea infection in grape berries[J]. Frontiers in Plant Science, 2020, 10: 1753.
[86]SOSSO D, VAN DER LINDE K, BEZRUTCZYK M, et al. Sugar partitioning between Ustilago maydis and its host Zea mays L during infection[J]. Plant Physiol, 2019, 179: 1373-1385.
[87]METEIER E, LA CAMERA S, GODDARD M L, et al. Overexpression of the VvSWEET4 transporter in grapevine hairy roots increases sugar transport and contents and enhances resistance to Pythium irregulare, a soilborne pathogen[J]. Front Plant Sci, 2019, 10: 884.
[88]李臣,后猛,马猛,等. 甘薯块根熟化过程中麦芽糖变化及其影响因素研究进展[J].江苏农业学报,2021,37(2):539-544.
[89]牛丽影,李大婧,刘春泉,等. 鲜食玉米中游离糖和游离氨基酸含量差异的多元统计分析[J].江苏农业学报,2020,36(2):463-470.
[90]JULIUS B T, LEACH K A, TRAN T M, et al. Sugar transporters in plants: new insights and discoveries[J]. Plant and Cell Physiology, 2017, 58(9): 1442-1460.
[91]GUPTA P K, BALYAN H S, GAUTAM T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects[J]. Molecular Plant Pathology, 2021, 22(8): 1014-10

备注/Memo

备注/Memo:
收稿日期:2022-05-09基金项目:安康学院高层次人才启动专项(2021AYQDZR13);安康市科技计划项目(AK2021-NY-15)作者简介:沈川(1990-),男,陕西安康人,博士,讲师,从事植物病毒致病机制研究。(E-mail)chuan_shen@aku.edu.cn
更新日期/Last Update: 2022-11-07