[1]陈贤,赵延存,明亮,等.水稻白叶枯病抗性相关基因的研究进展[J].江苏农业学报,2022,38(05):1402-1410.[doi:doi:10.3969/j.issn.1000-4440.2022.05.028]
 CHEN Xian,ZHAO Yan-cun,MING Liang,et al.Update of rice bacterial blight resistance genes[J].,2022,38(05):1402-1410.[doi:doi:10.3969/j.issn.1000-4440.2022.05.028]
点击复制

水稻白叶枯病抗性相关基因的研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1402-1410
栏目:
综述
出版日期:
2022-10-31

文章信息/Info

Title:
Update of rice bacterial blight resistance genes
作者:
陈贤1赵延存1明亮1杨勇2刘凤权1
(1.江苏省农业科学院植物保护研究所,江苏省食品质量安全重点实验室-省部共建国家重点实验室培育基地,江苏南京210014;2.浙江省农业科学院病毒学与生物技术研究所,浙江杭州310021)
Author(s):
CHEN Xian1ZHAO Yan-cun1MING Liang1YANG Yong2LIU Feng-quan1
(1.Institute of Plant Protection, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China)
关键词:
水稻白叶枯病主效抗病基因抗病相关基因感病基因防御机制
Keywords:
rice bacterial blightmajor resistance genesrelated resistance genesusceptible genedefense mechanisms
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.028
文献标志码:
A
摘要:
水稻白叶枯病是一种由革兰氏阴性黄单胞菌稻致病变种(Xanthomonas oryzae pv. oryzae,Xoo)引起的细菌性病害,是中国南方稻区常年发生的流行性病害。长期的生产实践证明,挖掘新型抗病基因以及合理利用新的广谱持久抗病品种是防控水稻白叶枯病最为经济、有效和环境友好的途径。阐明水稻对白叶枯病菌的防御机制能为水稻抗病育种奠定理论基础。本文简要概述了水稻白叶枯病的发生和现状,归纳了水稻主效抗病基因、抗病相关基因和感病基因的类型,总结了水稻抵御水稻白叶枯病病原细菌的主要途径,为水稻白叶枯病的绿色防控提供理论依据。
Abstract:
Rice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae is one of the most devastating rice disease in the world. BB is a prevalent epidemic bacterial disease in southern rice regions in China. It has been proved that the most economical, effective and environmentally friendly strategy for controlling BB is cultivating disease-resistant varieties, while the foundation for BB resistance breeding is to identify and apply new BB resistance genes. Elucidating the defense mechanism of rice against bacterial blight can lay a theoretical foundation for disease resistance breeding of rice. In this paper, the occurrence and current situation of rice bacterial blight were briefly summarized, the major resistance genes, related resistance genes and susceptible genes were overviewed, and the main ways of rice to resist bacterial blight were introduced, which could provide theoretical basis for green prevention and control of rice bacterial blight.

参考文献/References:

[1]MANSFIELD J, GENIN S, MAGORI S, et al. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(6): 614-629.
[2]章琦. 中国杂交水稻白叶枯病抗性的遗传改良[J]. 中国水稻科学, 2009, 23(2): 111-119.
[3]段永嘉. 关于我国水稻白叶枯病杂草传病研究的进展[J]. 云南农业大学学报, 1986,1(1): 117-124.
[4]季伯衡,郭嘉骥,彭钢,等. 水稻白叶枯病杂草带菌的检验[J]. 植物保护学报, 1984,11(8): 169-173.
[5]WHITE F F, YANG B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction[J]. Plant Physiology, 2009, 150(4): 1677-1686.
[6]方中达. 水稻白叶枯病[M]. 南京:江苏科学技术出版社, 1961:35-48.
[7]岩盆. 水稻白叶枯病的发生及防治[J]. 云南农业, 2014(3): 72-73.
[8]许志刚,刘凤权,沈秀萍,等 水稻白叶枯病和条斑病的流行与预测(综述)[J]. 西南农业大学学报, 1998,20(5): 567-572.
[9]陈生斗,胡伯海. 中国植物保护五十年[M]. 北京:中国农业出版社, 2003:472-558.
[10]陈功友,徐正银,杨阳阳,等. 我国水稻白叶枯病菌致病型划分和水稻抗病育种中应注意的问题[J]. 上海交通大学学报(农业科学版), 2019, 37(1): 67-73.
[11]王华弟,陈剑平,严成其,等. 中国南方水稻白叶枯病发生流行动态与绿色防控技术[J]. 浙江农业学报, 2017, 29(12): 2051-2059.
[12]CHEN S, WANG C, YANG J, et al. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120[J]. Scientific Reports, 2020, 10(1): 12642.
[13]章琦,赵炳宇,赵开军,等. 普通野生稻的抗水稻白叶枯病(Xanthomonas oryzae pv.oryzae)新基因Xa-23(t)的鉴定和分子标记定位[J]. 作物学报, 2000, 26(5):536-542.
[14]曾大力,钱前. 水稻广谱抗白叶枯病基因——Xa21基因被克隆[J]. 中国稻米, 1996(3): 39.
[15]LUU D, JOE A, CHEN Y, et al. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor[J]. Proceedings of the National Academy of Sciences, 2019, 116(17): 8525-8534.
[16]WANG C, ZHANG X, FAN Y, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice[J]. Molecular Plant, 2015, 8(2): 290-302.
[17]WU L, GOH M L, SREEKALA C, et al. XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv. oryzae[J]. Plant Physiology, 2008, 148(3): 1497-1509.
[18]IYER-PASCUZZI A S, JIANG H, HUANG L, et al. Genetic and functional characterization of the rice bacterial blight disease resistance gene xa5[J]. Phytopathology, 2008, 98(3): 289-295.
[19]CHU Z, FU B, YANG H, et al. Targeting xa13, a recessive gene for bacterial blight resistance in rice[J]. Theoretical and Applied Genetics, 2006, 112: 455-461.
[20]ROMER P, RECHT S, STRAUSS T, et al. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae[J]. New Phytologist, 2010, 187: 1048-1057.
[21]LIU Q, YUAN M, ZHOU Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice[J].Plant, Cell and Environment, 2011, 34(11): 1958-1969.
[22]YOSHIMURA S, YAMANOUCHI U, KATAYOSE Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1663-1668.
[23]SUN X, CAO Y, YANG Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein[J]. The Plant Journal, 2004, 37(4): 517-527.
[24]TIAN D, WANG J, ZENG X, et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum[J].The Plant Cell, 2014, 26(1): 497-515.
[25]CHEN X, LIU P, MEI L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacteria-blight disease in rice[J]. Plant Communications, 2021,2(3):100143.
[26]THOMAS N C, OKSENBERG N, LIU F, et al. The rice XA21 ectodomain fused to the Arabidopsis EFR cytoplasmic domain confers resistance to Xanthomonas oryzae pv. oryzae[J]. PeerJ, 2018, 6: e4456.
[27]WANG J, TIAN D, GU K, et al. Induction of Xa10-like genes in rice cultivar nipponbare confers disease resistance to rice bacterial blight[J]. Molecular Plant-Microbe Interactions, 2017, 30(6): 466-477.
[28]袁斌. OsMPK6双向调控水稻抗病反应[D]. 武汉:华中农业大学, 2007.
[29]PRASAD B D, CREISSEN G, LAMB C, et al. Overexpression of rice (Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis[J]. Molecular Plant-Microbe Interactions, 2009, 22(12): 1635-1644.
[30]SHIMONO M, KOGA H, AKAGI A, et al. Rice WRKY45 plays important roles in fungal and bacterial disease resistance[J]. Molecular Plant Pathology, 2012, 13(1): 83-94.
[31]PRASAD B D, CREISSEN G, LAMB C, et al. Heterologous expression and characterization of recombinant OsCDR1, a rice aspartic proteinase involved in disease resistance[J]. Protein Expression and Purification, 2010, 72(2): 169-174.
[32]BART R S, CHERN M, VEGA-SANCHEZ M E, et al. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae[J]. PLoS Genetics, 2010, 6(9): e1001123.
[33]CHEN X, CHERN M, CANLAS P E, et al. An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(17): 8029-8034.
[34]WANG Y S, PI L Y, CHEN X, et al. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance[J].The Plant Cell, 2006, 18(12): 3635-3646.
[35]PARK C J, BART R, CHERN M, et al. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice[J]. PLoS One, 2010, 5(2): e9262.
[36]PENG Y, BARTLEY L E, CHEN X, et al. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice[J]. Molecular Plant, 2008, 1(3): 446-458.
[37]XU C, HE C. The rice OsLOL2 gene encodes a zinc finger protein involved in rice growth and disease resistance[J]. Molecular Genetics and Genomics, 2007, 278(1): 85-94.
[38]QIAO Y, JIANG W, LEE J, et al. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa) [J]. New Phytologist, 2010, 185: 258-274.
[39]MATSUI H, MIYAO A, TAKAHASHI A, et al. Pdk1 kinase regulates basal disease resistance through the OsOxi1-OsPti1a phosphorylation cascade in rice[J]. Plant and Cell Physiology, 2010, 51(12): 2082-2091.
[40]MATSUI H, YAMAZAKI M, KISHI-KABOSHI M, et al. AGC kinase OsOxi1 positively regulates basal resistance through suppression of OsPti1a-mediated negative regulation[J]. Plant and Cell Physiology, 2010, 51(10): 1731-1744.
[41]SHEN X, YUAN B, LIU H, et al. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae[J]. The Plant Journal, 2010, 64(1): 86-99.
[42]YUAN B, SHEN X, LI X, et al. Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens[J]. Planta, 2007, 226(4): 953-960.
[43]DELTEIL A, BLEIN M, FAIVRE-RAMPANT O, et al. Building a mutant resource for the study of disease resistance in rice reveals the pivotal role of several genes involved in defence[J]. Molecular Plant Pathology, 2012, 13(1): 72-82.
[44]WANG G, DING X, YUAN M, et al. Dual function of rice OsDR8 gene in disease resistance and thiamine accumulation[J]. Plant Molecular Biology, 2006, 60(3): 437-449.
[45]DING X, CAO Y, HUANG L, et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice[J]. The Plant Cell, 2008, 20(1): 228-240.
[46]TONG X, QI J, ZHU X, et al. The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway[J]. The Plant Journal, 2012, 71(5): 763-775.
[47]TU R, WANG H, LIU Q, et al. Characterization and genetic analysis of the oshpl3 rice lesion mimic mutant showing spontaneous cell death and enhanced bacterial blight resistance[J]. Plant Physiology and Biochemistry, 2020, 154: 94-104.
[48]TAO Z, LIU H, QIU D, et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions[J]. Plant Physiology, 2009, 151(2): 936-948.
[49]FITZGERALD H A, CANLAS P E, CHERN M S, et al. Alteration of TGA factor activity in rice results in enhanced tolerance to Xanthomonas oryzae pv. oryzae[J]. The Plant Journal, 2005, 43(3): 335-347.
[50]章琦. 水稻白叶枯病抗性的遗传及改良[M]. 北京:科学出版社, 2007:4-8.
[51]XU Z, XU X, GONG Q, et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice[J]. Molecular Plant, 2019, 12(11): 1434-1446.
[52]JIANG G H, XIA Z H, ZHOU Y L, et al. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1[J]. Molecular Genetics and Genomics, 2006, 275(4): 354-366.
[53]马来. 水稻蔗糖转运蛋白OsSWEET11和OsSWEET14功能的研究[D]. 南京:南京农业大学, 2016.
[54]OLIVA R, JI C, ATIENZA-GRANDE G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nature Biotechnology, 2019, 37(11): 1344-1350.
[55]YUAN T, LI X, XIAO J, et al. Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13[J]. Molecular Plant, 2011, 4(2): 300-309.
[56]ZHOU J, PENG Z, LONG J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. The Plant Journal, 2015, 82(4): 632-643.
[57]FLOR H H. Current status of gene-for-gene concept[J]. The Annual Review of Phytopathology, 1971, 9(1): 275-296.
[58]陈功友,邹丽芳,王邢平,等. 水稻白叶枯病菌致病性分子遗传学基础[J]. 中国农业科学, 2004, 37(9): 1301-1307.
[59]DEHURY B, MAHARANA J, SAHOO B R, et al. Molecular recognition of avirulence protein (avrxa5) by eukaryotic transcription factor xa5 of rice (Oryza sativa L.): insights from molecular dynamics simulations[J]. The Journal of Molecular Modeling, 2015, 57: 49-61.
[60]JI Z Y, XIONG L, ZOU L F, et al. AvrXa7-Xa7 mediated defense in rice can be suppressed by transcriptional activator-like effectors TAL6 and TAL11a from Xanthomonas oryzae pv. oryzicola[J]. Molecular Plant-Microbe Interactions, 2014, 27(9): 983-995.
[61]GU K, TIAN D, QIU C, et al. Transcription activator-like type III effector AvrXa27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2009, 10(6): 829-835.
[62]LUU D D, JOE A, CHEN Y, et al. Biosynthesis and secretion of the microbial sulfated peptide RaxX and binding to the rice XA21 immune receptor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8525-8534.
[63]SUGIO A, YANG B, ZHU T, et al. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10720-10725.
[64]MA W, ZOU L, ZHIYUAN J I, et al. Xanthomonas oryzae pv. oryzae TALE proteins recruit OsTFIIAγ1 to compensate for the absence of OsTFIIAγ5 in bacterial blight in rice[J]. Molecular Plant Pathology, 2018, 19(10): 2248-2262.
[65]HUI S, SHI Y, TIAN J, et al. TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice[J]. Molecular Plant Pathology, 2019, 20(4): 519-532.
[66]TIAN D, YIN Z. Constitutive heterologous expression of avrXa27 in rice containing the R gene Xa27 confers enhanced resistance to compatible Xanthomonas oryzae strains[J]. Molecular Plant Pathology, 2009, 10(1): 29-39.
[67]LI P, LONG J, HUANG Y, et al. AvrXa3: a novel member of avrBs3 gene family from Xanthomonas oryzae pv. oryzae has a dual function[J]. Progress in Natural Science, 2004, 14(9): 774-780.
[68]高明君,何祖华. 水稻免疫机制研究进展[J]. 中国科学:生命科学, 2013, 43(12): 1016-1029.
[69]CHOUDHARY D K, PRAKASH A, JOHRI B N. Induced systemic resistance (ISR) in plants: mechanism of action[J]. Indian Journal of Microbiology, 2007, 47(4): 289-297.
[70]宁东峰,梁永超. 硅调节植物抗病性的机理:进展与展望[J]. 植物营养与肥料学报, 2014, 20(5): 1280-1287.
[71]王忠华,贾育林,夏英武. 植物抗病分子机制研究进展[J]. 植物学通报, 2004,21(5): 521-530.
[72]刘丽霞,程红卫,陈温福. 不同类型水稻剑叶气孔长、宽度与气孔密度的研究[J]. 垦殖与稻作, 2001(2): 5-8.
[73]CHEN X, SUN C, LABORDA P, et al. Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae [J]. Frontiers in Microbiology, 2018, 9: 2280.
[74]侯小华,李友荣,魏子生,等. 湖南省水稻地方品种资源白叶枯病抗性评价[J]. 湖南农业科学, 2001(4): 42-43.
[75]张端品,谢岳峯. 粳稻品种对白叶枯病的抗性遗传[J]. 中国农业科学, 1982(5): 17-24.
[76]NAKASHITA H, YASUDA M, NITTA T, et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice[J]. The Plant Journal, 2003, 33(5): 887-898.
[77]ZHANG S, WANG S, XU Y, et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1[J]. Plant Cell and Environment, 2015, 38(4): 638-654.
[78]SANA T R, FISCHER S, WOHLGEMUTH G, et al. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae[J]. Metabolomics, 2010, 6: 451-465.
[79]CHEN X, RONALD P C. Innate immunity in rice[J]. Trends in Plant Science, 2011, 16(8): 451-459.
[80]BIGEARD J, COLCOMBET J, HIRT H. Signaling mechanisms in pattern-triggered immunity (PTI)[J]. Molecular Plant, 2015, 8(4): 521-539.
[81]JONES J D, DANGL J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329.
[82]LAFLAMME B, DILLON M M, MARTEL A, et al. The pan-genome effector-triggered immunity landscape of a host-pathogen interaction[J]. Science, 2020, 367(6479): 763-768.

备注/Memo

备注/Memo:
收稿日期:2021-12-10基金项目:国家自然科学基金项目(32072379);江苏省食品质量安全重点实验室-省部共建国家重点实验室培育基地基金项目(2021-SBGJ-Z2-2);浙江省农业科学院农产品质量安全危害因子与风险防控国家重点实验室(筹)开放基金项目(2010DS700124-KF2007);江苏省农业科学院植物保护研究所青年实践调研项目[SJ(2019)02]作者简介:陈贤(1984-),男,湖北蕲春人,博士,助理研究员,主要从事病原菌与寄主植物的互作研究。(E-mail)cxbmh@126.com 通讯作者:刘凤权,(E-mail)fqliu20011@ sina.com;杨勇,(E-mail)yangyong@zaas.ac.cn
更新日期/Last Update: 2022-11-07