[1]程金金,孙星,田莉莉,等.不同邻苯二甲酸二丁酯污染方式对其降解和土壤细菌群落的影响[J].江苏农业学报,2022,38(05):1248-1256.[doi:doi:10.3969/j.issn.1000-4440.2022.05.011]
 CHENG Jin-jin,SUN Xing,TIAN Li-li,et al.Impact of different pollution patterns of dibutyl phthalate on its degradation and bacterial community in soil[J].,2022,38(05):1248-1256.[doi:doi:10.3969/j.issn.1000-4440.2022.05.011]
点击复制

不同邻苯二甲酸二丁酯污染方式对其降解和土壤细菌群落的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1248-1256
栏目:
耕作栽培·资源环境
出版日期:
2022-10-31

文章信息/Info

Title:
Impact of different pollution patterns of dibutyl phthalate on its degradation and bacterial community in soil
作者:
程金金12孙星12田莉莉12王亚12余向阳12
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.省部共建国家重点实验室培育基地/江苏省食品质量安全重点实验室,江苏南京210014)
Author(s):
CHENG Jin-jin12SUN Xing12TIAN Li-li12WANG Ya12YU Xiang-yang12
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.Jiangsu Key Laboratory for Food Quality and Safety/State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China)
关键词:
邻苯二甲酸二丁酯累积污染微生物群落结构红壤黄棕壤
Keywords:
dibutyl phthalaterepeated pollutionmicrobial community structurered soilyellow-brown soil
分类号:
S154.34
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.011
文献标志码:
A
摘要:
为准确评估邻苯二甲酸二丁酯(DBP)污染对土壤环境的影响,对比研究不同DBP污染方式[高剂量(20 mg/kg)单次污染处理(S处理)、低剂量(1 mg/kg)累积污染(每7 d污染1次,连续污染20次)处理(R处理)、CK(无污染母土)]对DBP降解及土壤细菌群落的影响。结果表明,土壤细菌群落的α多样性对不同DBP污染方式的响应较不敏感;2种污染方式均显著改变了土壤细菌群落的β多样性,S处理对红壤细菌群落结构的影响较大,R处理对黄棕壤细菌群落结构的影响较大;在2种污染方式处理下,红壤、黄棕壤中部分具有氮素转化、有机物分解、拮抗病原菌和植物促生等重要功能的细菌群落产生了显著扰动;此外,2种污染方式均显著提高了土壤对DBP的降解能力,与S处理相比,R处理的红壤、黄棕壤中DBP的降解半衰期分别缩短了77.18%、28.57%,表明低剂量累积污染处理方式对土壤中DBP的降解有更强的促进作用。
Abstract:
In order to accurately assess the environmental effects of dibutyl phthalate (DBP) pollution, high-dose (20 mg/kg) single pollution pattern (S treatment) and low-dose (1 mg/kg) repeated pollution pattern (R treatment) were simulated, and the impact of different pollution patterns of DBP on its degradation and bacterial community was compared. Results showed that the bacterial community α-diversities were less sensitive to different DBP pollution patterns. However, the two pollution patterns significantly changed the bacterial community β-diversities. The impact of the S treatment on the bacterial community structure of red soil was greater than that of the R treatment, and the impact of the R treatment on the bacterial community structure of yellow-brown soil was greater than that of the S treatment. The two pollution patterns caused significant disturbance to some bacterial communities with important functions such as nitrogen transformation, organic matter decomposition, pathogen antagonism and plant growth promotion in red soil and yellow-brown soil. In addition, the two pollution patterns significantly improved the ability of red soil and yellow-brown soil to degrade the subsequent DBP pollution. Compared with the S treatment, the degradation half-lives of DBP in red soil and yellow-brown soil under the R treatment were shortened by 77.18% and 28.57%, respectively, indicating that the R treatment had a stronger promoting effect on the degradation of DBP in soil.

参考文献/References:

[1]SUN J T, PAN L L, TSANG D C W, et al. Organic contamination and remediation in the agricultural soils of China: a critical reviews[J]. Science of the Total Environment, 2018, 615: 724-740.
[2]GAO M L, DONG Y M, ZHANG Z, et al. Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress[J]. Chemosphere, 2017, 172: 418-428.
[3]FARZANEHFAR V, NADERI N, KOBARFARD F, et al. Determination of dibutyl phthalate neurobehavioral toxicity in mice[J]. Food and Chemical Toxicology, 2016, 94: 221-226.
[4]宋雪英,崔小维,李嘉康,等. 邻苯二甲酸酯类塑化剂的土壤生态毒理学研究进展[J]. 生态环境学报, 2016, 25(11): 1885-1890.
[5]KONG X, JIN D C, JIN S L, et al. Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem[J]. Journal of Hazardous Materials, 2018, 353: 142-150.
[6]WANG Z G, LIU S, XU W H, et al. The microbiome and functions of black soils are altered by dibutyl phthalate contamination[J]. Applied Soil Ecology, 2016, 99: 51-61.
[7]XU W H, YOU Y M, WANG Z G, et al. Dibutyl phthalate alters the metabolic pathways of microbes in black soils[J]. Scientific Reports, 2018, 8(1): 2605.
[8]吴学玲,代沁芸,梁任星,等. 利用高效降解菌株强化修复土壤中DBP及其细菌群落动态解析[J]. 中南大学学报(自然科学版), 2011, 42(5): 1188-1194.
[9]沈思,王晓瑜,王海霞,等. 细菌降解邻苯二甲酸酯的研究进展[J]. 生物工程学报, 2019, 35(11): 2104-2120.
[10]ZHAN Y, SUN J T, LUO Y Z, et al. Estimating emissions and environmental fate of di-(2-ethylhexyl) phthalate in Yangtze river delta, China: application of inverse modeling[J]. Environmental Science & Technology, 2016, 50(5): 2450-2458.
[11]张伟,郑彬,马静静,等. 土壤B[a]P多次叠加污染的生物有效性及对蚯蚓体腔细胞染色体和溶酶体的毒性效应[J]. 应用与环境生物学报, 2014, 20(6): 1020-1026.
[12]葛高飞,张鸣帅,姚时,等. 苯并[a]芘不同污染方式对黄褐土微生物区系的影响[J]. 农业环境科学学报, 2018, 37(5): 941-947.
[13]杨广斌,周世萍,熊张平,等. 不同污染条件下毒死蜱在蚯蚓体内的蓄积特征及其生长影响[J]. 土壤通报, 2021, 52(4): 920-926.
[14]马静静,钱新春,张伟,等. 土壤菲多次叠加污染对蚯蚓的毒性效应[J]. 土壤学报, 2015, 52(6): 1374-1382.
[15]WANG F H, ZHU L S, WANG X G, et al. Impact of repeated applications of metalaxyl on its dissipation and microbial community in soil[J]. Water, Air, and Soil Pollution, 2015, 226(12): 430.
[16]HE L Z, GIELEN G, BOLAN N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: a review[J]. Agronomy for Sustainable Development, 2015, 35: 519-534.
[17]CHENG J J, LIU Y A, WAN Q, et al. Degradation of dibutyl phthalate in two contrasting agricultural soils and its long-term effects on soil microbial community[J]. Science of the Total Environment, 2018, 640/641: 821-829.
[18]YANG F, WANG M, WANG Z Y, et al. Sorption behavior of 17 phthalic acid esters on three soils: effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study[J]. Chemosphere, 2013, 93(1): 82-89.
[19]TANG T, SHI T Y, LI D G, et al. Adsorption properties and degradation dynamics of endocrine-disrupting chemical levonorgestrel in soils[J]. Journal of Agricultural and Food Chemistry, 2012, 60(16): 3999-4004.
[20]李晶,刘玉荣,贺纪正,等. 土壤微生物对环境胁迫的响应机制[J]. 环境科学学报, 2013, 33(4): 959-967.
[21]李凤霞,王长军. 土壤氮素转化及相关微生物过程研究[J]. 宁夏农林科技, 2018, 59(4): 37-40.
[22]张艳华,王惠,王岩,等. 辽宁省慢生根瘤菌的系统发育多样性[J]. 江苏农业科学, 2016, 44(7): 67-70.
[23]杜慧竟,余利岩,张玉琴. 类诺卡氏属放线菌的研究进展[J]. 微生物学报, 2012, 52(6): 671-678.
[24]LI Q Q, LI J B, JIANG L F, et al. Diversity and structure of phenanthrene degrading bacterial communities associated with fungal bioremediation in petroleum contaminated soil[J]. Journal of Hazardous Materials, 2021, 403: 123895.
[25]LIU W Y, ZHAO Q Q, ZHANG Z Y, et al. Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes[J]. Science of the Total Environment, 2020, 716: 137121.
[26]FU R J, CHENG R, WANG S M, et al. Succinoglycan riclin reshaped the soil microbiota by accumulating plant probiotic species to improve the soil suppressiveness on Fusarium wilt of cucumber seedlings[J]. International Journal of Biological Macromolecules, 2021, 182: 1883-1892.
[27]CHENG X R, YUAN H J, XU H D, et al. Rhizobacterial communities and fine root traits together reveal variations in growth performance of Quercus acutissima in different provenances[J]. European Journal of Forest Research, 2020, 139(S): 1091-1105.
[28]DEVI T S, VIJAY K, VIDHYAVATHI R M, et al. Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSⅡ from mangrove sediments[J]. Archives of Microbiology, 2021, 203: 4051-4064.
[29]王岚,张静,路璐. 不同浓度鼠李糖脂对土壤多环芳烃去除率及微生物群落结构的影响[J]. 环境污染与防治, 2019, 41(8): 901-905.
[30]CHEN X F, WANG J C, YOU Y M, et al. When nanoparticle and microbes meet: the effect of multi-walled carbon nanotubes on microbial community and nutrient cycling in hyperaccumulator system[J]. Journal of Hazardous Materials, 2022, 423(A): 126947.
[31]CABRERA R, GARCA-LPEZ H, AGUIRRE-VON-WOBESER E, et al. Amycolatopsis BX17: an actinobacterial strain isolated from soil of a traditional milpa agroecosystem with potential biocontrol against Fusarium graminearum[J]. Biological Control, 2020, 147: 104285.
[32]冯佳胤,朱敏,何艳. 土壤主要还原转化过程中微生物功能基因多样性研究进展[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 663-675.
[33]韩永和,何睿文,李超,等. 邻苯二甲酸酯降解细菌的多样性、降解机理及环境应用[J]. 生态毒理学报,2016, 11(2): 37-49.
[34]JOHNSEN K, JACOBSEN C S, TORSVIK V, et al. Pesticide effects on bacterial diversity in agricultural soils-a review[J]. Biology and Fertility of Soils, 2001, 33(6): 443-453.

相似文献/References:

[1]袁丽,刘彦爱,程金金,等.上海青对土壤邻苯二甲酸二丁酯的富集及毒性响应特征[J].江苏农业学报,2019,(01):204.[doi:doi:10.3969/j.issn.1000-4440.2019.01.029]
 YUAN Li,LIU Yan-ai,CHENG Jin-jin,et al.Enrichment characteristics and ecotoxic responses of Brassica chinensis L. to di-n-butyl phthalate[J].,2019,(05):204.[doi:doi:10.3969/j.issn.1000-4440.2019.01.029]

备注/Memo

备注/Memo:
收稿日期:2022-01-21基金项目:江苏省农业科技自主创新基金项目[CX(20)3052]作者简介:程金金(1987-),女,江苏泗洪人,博士,副研究员,主要从事农产品产地环境研究。(E-mail)jjcheng1206@163.com通讯作者:余向阳,(E-mail)yuxy@jaas.ac.cn
更新日期/Last Update: 2022-11-07