[1]魏宏宇,李怡,彭帅英,等.胞外多糖促进胁迫条件下农作物生长的研究与展望[J].江苏农业学报,2022,38(04):1123-1134.[doi:doi:10.3969/j.issn.1000-4440.2022.04.032]
 WEI Hong-yu,LI Yi,PENG Shuai-ying,et al.Promoting crop growth under stress conditions by exopolysaccharides: review and perspective[J].,2022,38(04):1123-1134.[doi:doi:10.3969/j.issn.1000-4440.2022.04.032]
点击复制

胞外多糖促进胁迫条件下农作物生长的研究与展望()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1123-1134
栏目:
综述
出版日期:
2022-08-31

文章信息/Info

Title:
Promoting crop growth under stress conditions by exopolysaccharides: review and perspective
作者:
魏宏宇12李怡12彭帅英12黄林12张宝12李昆太3程新12
(1.江西农业大学应用微生物研究所,江西南昌330045;2.江西农业大学生物科学与工程学院,江西南昌330045;3.广东海洋大学食品科技学院,广东湛江524088)
Author(s):
WEI Hong-yu12LI Yi12PENG Shuai-ying12HUANG Lin12ZHANG Bao12LI Kun-tai3CHENG Xin12
(1.Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang 330045, China;2.College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China;3.College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China)
关键词:
胞外多糖产胞外多糖微生物农作物胁迫
Keywords:
exopolysaccharidesexopolysaccharides-producing microorganismscropstress
分类号:
S182
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.032
文献标志码:
A
摘要:
胞外多糖是微生物分泌的一大类天然大分子活性物质,在食品、医药、化工等领域有着广泛的应用。目前,大量研究结果表明,胞外多糖是一种很好的生物源肥料,外源施加可以有效地提高农作物生长性能,激活农作物自身潜在的防御机制,以此促进不同胁迫条件下农作物的生长。本文综述了胞外多糖提高盐、干旱、重金属等胁迫条件下农作物生长及生理代谢的研究进展,进而对胞外多糖促进胁迫条件下农作物生长的机理进行了归纳和总结,并对本领域的研究热点进行了展望,旨在推进胞外多糖在农业领域的应用。
Abstract:
Exopolysaccharides (EPS) are a large class of natural macromolecular active substances secreted by microorganisms, and play an extensive role in food, medicine, chemical industry and other fields. Numerous research results show that EPS can be used as biological fertilizer. Exogenous application can effectively improve the growth performance of crops and activate their potential defense mechanisms, thus promoting the growth of crops under different stress conditions. Research progress of EPS in improving crop growth and physiological metabolism under stress conditions such as salt stress, drought stress and heavy metals stress was reviewed, and the mechanism of EPS in promoting crop growth under stress conditions was also summarized. In the end, the hotspots in this field were prospected. The aim of this paper is to advance the application of EPS in agriculture.

参考文献/References:

[1]ZANNINI E, WATERS D M, COFFEY A, et al. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides[J]. Applied Microbiology and Biotechnology, 2016, 100(3):1121-1135.
[2]WANG J, SALEM D R, SANI R K. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications[J]. Carbohydrate Polymers, 2019, 205:8-26.
[3]NWODO U U, GREEN E, OKOH A I. Bacterial exopolysaccharides: functionality and prospects[J]. International Journal of Molecular Sciences, 2012, 13(11):14002-14015.
[4]ROSSI F, POTRAFKA R M, PICHEL F G, et al. The role of the exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts[J]. Soil Biology and Biochemistry, 2012, 46:33-40.
[5]KHAN N, BANO A. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions[J]. PLoS One, 2019, 14(9):e0222302.
[6]SUN L, LEI P, WANG Q, et al. The endophyte Pantoea alhagi NX-11 alleviates salt stress damage to rice seedlings by secreting exopolysaccharides[J]. Frontiers in Microbiology, 2020, 10:1-13.
[7]ATOUEI M T, POURBABAEE A A, SHORAFA M. Alleviation of salinity stress on some growth parameters of wheat by exopolysaccharide-producing bacteria[J]. Iranian Journal of Science and Technology,Transactions A: Science, 2019, 43(5):2725-2733.
[8]UPADHYAY S K, SINGH J S, SINGH D P. Exopolysaccharide-producing plant growth-promoting rhizobacteria under salinity condition[J]. Pedosphere, 2011, 21(2):214-222.
[9]ISFAHANI F M, TAHMOURESPOUR A, HOODAJI M, et al. Influence of exopolysaccharide-producing bacteria and SiO2 nanoparticles on proline content and antioxidant enzyme activities of tomato seedlings (Solanum Lycopersicum L.) under salinity stress[J]. Polish Journal of Environmental Studies, 2019, 28(1):153-163.
[10]NASEEM H, BANO A. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize[J]. Journal of Plant Interactions, 2014, 9(1):689-701.
[11]SANDHYA V, ALI S K Z, GROVER M, et al. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress[J]. Journal of Plant Interactions, 2011, 6(1):1-14.
[12]PRAMANIK K, MITRA S, SARKAR A, et al. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium[J]. Environmental Science and Pollution Research, 2017, 24(31):24419-24437.
[13]ZHANG W P, ZHAO Y J, ZHAO Z W, et al. Structural characterization and induced copper stress resistance in rice of exopolysaccharides from Lactobacillus plantarum LPC-1[J]. International Journal of Biological Macromolecules, 2020, 152:1077-1088.
[14]罗晟,赵泽文,任新宇,等. 屎肠球菌胞外多糖对镉胁迫下水稻种子萌发及幼苗生长的影响[J]. 农业环境科学学报, 2020, 39(9):1888-1899.
[15]KESHKEIH R A, ABU-GHORRAH M, JALLOUL A. Exopolysaccharides from Xanthomonas citri pv. malvacearum induce resistance in cotton against bacterial blight[J]. Biotechnologia, 2019, 100(2):101-109.
[16]刘偲嘉. PS04菌株胞外多糖诱导植物抗性及其应用研究[D]. 广州: 华南农业大学, 2016.
[17]SANDHYA V, ALI S K Z. The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation[J]. Microbiology, 2015, 84(4):512-519.
[18]SANDHYA V, ALI S K Z, GROVER M, et al. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology & Fertility of Soils, 2009, 46(1):17-26.
[19]TEWARI S, ARORA K. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions[J]. Cellular and Molecular Biology, 2014, 60(5):73-81.
[20]ASHRAF M, HASNAIN S, BERGE O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils, 2004, 40(3):157-162.
[21]QURASHI A W, SABRI A N. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3):1183-1191.
[22]ARROUSSI H E, BENHIMA R, ELBAOUCHI A, et al. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum)[J]. Journal of Applied Phycology, 2018, 30(5):2929-2941.
[23]LEE T E, LOUTIT M W. Effect of extracellular polysaccharides of rhizosphere bacteria on the concentration of molybdenum in plants[J]. Soil Biology & Biochemistry, 1977, 9(6):411-415.
[24]ARORA M, KAUSHIK A, RANI N, et al. Effect of cyanobacterial exopolysaccharides on salt stress alleviation and seed germination[J]. Journal of Environmental Biology, 2010, 31(5):701-704.
[25]BLAINSKI J M L, NETO A C R, SCHIMIDT E C, et al. Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot[J]. Applied Microbiology and Biotechnology, 2018, 102(11):4741-4753.
[26]BLAINSKI J M L, NETO A C R, LUIZ C, et al. Lactobacillus plantarum exopolysaccharides induce resistance against tomato bacterial spot[J]. Journal of Agricultural Science, 2017, 9(2):162-179.
[27]XU Y H, ROSSI F, COLICA G, et al. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approachfor the restoration of desertified areas[J]. Biology and Fertility of Soils, 2012, 49(2):143-152.
[28]NIU X G, SONG L C, XIAO Y N, et al. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2018, 8:1-11.
[29]KAVAMURA V N, SANTOS S N, SILVA J L D, et al. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought[J]. Microbiological Research, 2013, 168(4):183-191.
[30]GHOSH D, GUPTA A, MOHAPATRA S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana[J]. World Journal of Microbiology & Biotechnology, 2019, 35(6):1-15.
[31]AWAD N M, TURKY A S, ABDELHAMID M T, et al. Ameliorate of environmental salt stress on the growth of Zea Mays L. plants by exopolysaccharides producing bacteria[J]. Journal of Applied Sciences Research, 2012, 8(4):2033-2044.
[32]HUSSAIN M B, ZAHIR Z A, ASGHAR H N, et al. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat?[J]. International Journal of Agriculture and Biology, 2014, 16(1):3-13.
[33]BHARTI N, YADAV D, BARNAWAL D. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri L. Pennell under primary and secondary salt stress[J]. World Journal of Microbiology & Biotechnology, 2013, 29(2):379-387.
[34]ALENEZI F N, IMEN R, ALI C B, et al. Increased biological activity of Aneurinibacillus migulanus strains correlates with the production of new gramicidin secondary metabolites[J]. Frontiers in Microbiology, 2017, 8:1-11.
[35]TEWARI S, ARORA N K. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions[J]. Current Microbiology, 2014, 69(4):484-494.
[36]VIMAL S R, PATEL V K, SINGH J S. Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants[J]. Ecological Indicators, 2019, 105:553-562.
[37]UPADHYAY A, KOCHAR M V, RAJAM M, et al. Players over the surface: unraveling the role of exopolysaccharides in zinc biosorption by fluorescent Pseudomonas strain Psd[J]. Frontiers in Microbiology, 2017, 8:1-15.
[38]BHARTI N, BARNAWAL D, AWASTHI A, et al. Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis[J]. Acta Physiologiae Plantarum, 2014, 36(1):45-60.
[39]YANG A, AKHTAR S S, IQBAL S, et al. Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation[J]. Functional Plant Biology, 2016, 43(7):632-642.
[40]HONG B H, JOE M M, SELVAKUMAR G, et al. Influence of salinity variations on exocellular polysaccharide production, biofilm formation and flocculation in halotolerant bacteria[J]. Journal of Environmental Biology, 2017, 38(4):657-664.
[41]LU X, LIU S F, YUE L, et al. Epsc involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2018, 19(12):1-18.
[42]ILYAS N, MUMTAZ K, AKHTAR N, et al. Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat[J]. Sustainability, 2020, 12(21):1-19.
[43]NAJM-UL-SEHER, MAQSHOOF A, AZHAR H, et al. Potential of exopolysaccharides producing-lead tolerant Bacillus strains for improving spinach growth under lead stress[J]. International Journal of Agriculture and Biology, 2020, 24(6):1845-1854.
[44]ALI J, ALI F, AHMAD I, et al. Mechanistic elucidation of germination potential and growth of Sesbania sesban seedlings with Bacillus anthracis PM21 under heavy metals stress: an in vitro study[J]. Ecotoxicology and Environmental Safety, 2021, 208:1-11.
[45]DRIRA M, ELLEUCH J, BEN HLIMA H, et al. Optimization of exopolysaccharides production by Porphyridium sordidum and their potential to induce defense responses in Arabidopsis thaliana against Fusarium oxysporum[J]. Biomolecules, 2021, 11(2):1-17.
[46]SAIJO Y, LOO E P I. Plant immunity in signal integration between biotic and abiotic stress responses[J]. New Phytologist, 2019, 225(1):87-104.
[47]冯依涛,阎秀兰,佟雪娇,等. 再生铝企业周边农田土壤与农作物重金属含量特征分析[J]. 农业环境科学学报, 2020, 39(1):87-96.
[48]SILAMBARASAN S, LOGESWARI P, CORNEJO P, et al. Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions[J]. International Journal of Biological Macromolecules, 2019, 121:55-62.
[49]刘煜珺,张雨晴,高原,等. 乳杆菌胞外多糖抗氧化活性研究[J]. 中国食品学报, 2019, 19(6):21-35.
[50]LIU W, LI R J, HAN T J, et al. Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in arabidopsis[J]. Plant Physiology, 2015, 168(1):343-356.
[51]ARORA N, SUNITA K, MISHRA I, et al. Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants[J]. Frontiers in Microbiology, 2020, 11: 1-12.
[52]DING Y J, ZHANG S Q, ZHAO L, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4):245-253.
[53]ARIF N, SHARMA N C, YADAV V, et al. Understanding heavy metal stress in a rice crop: toxicity, tolerance mechanisms, and amelioration strategies[J]. Journal of Plant Biology, 2019, 62(4):239-253.
[54]MUKHERJEE P, MITRA A, ROY M. Halomonas rhizobacteria of Avicennia marina of indian sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production[J]. Frontiers in Microbiology, 2019, 10:1-18.
[55]SHARMA R K, BAROT K, ARCHANA G. Root colonization by heavy metal resistant Enterobacter and its influence on metal induced oxidative stress on Cajanus cajan[J]. Journal of the Science of Food and Agriculture, 2020, 100(4):1532-1540.
[56]彭向永,于荟,石磊,等. 海带硫酸多糖对镉毒害甜瓜幼苗的保护作用[J]. 农业环境科学学报, 2010, 29(9):1640-1645.
[57]HOU W J, MA Z Q, SUN L L, et al. Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+[J]. Journal of Hazardous Materials, 2013, 261:614-620.
[58]闫智臣,古丽君,李应德,等. 植物病害对中国豆科牧草及家畜生产的影响[J]. 家畜生态学报, 2019, 40(2):6-12.
[59]JEONG D, KIM D H, KANG I B, et al. Characterization and antibacterial activity of a novel exopolysaccharide produced by Lactobacillus kefiranofaciens DN1 isolated from kefir[J]. Food Control, 2017, 78:436-442.
[60]WU S M, LIU G, JIN W H, et al. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa[J]. Frontiers in Microbiology, 2016, 7:1-15.
[61]DENNY T P. Involvement of bacterial polysaccharides in plant pathogenesis[J]. Annual Review of Phytopathology, 1995, 33(1):173-197.
[62]ZUCCO M A, WALTERS S A, CHONG S K, et al. Effect of soil type and vermicompost applications on tomato growth[J]. International Journal of Recycling of Organic Waste in Agriculture, 2015, 4(2):135-141.
[63]WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]. Heidelberg: Springer, 1999.
[64]艾雪. 沙漠结皮中耐盐碱细菌的分离及其固沙特性研究[D]. 兰州: 兰州交通大学, 2015.
[65]陈兰周,刘永定,宋立荣. 微鞘藻胞外多糖在沙漠土壤成土中的作用[J]. 水生生物学报, 2002, 26(2):155-159.
[66]ASHRAF S H B M. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil[J]. International Journal of Environmental Science and Technology, 2006, 3(1):43-51.
[67]张文平,王清,黄诗宸,等. 乳酸菌胞外多糖对水稻生长及土壤理化性质的影响[J]. 浙江农业学报, 2019, 31(1):130-138.
[68]张文平,李昆太,黄林,等. 产胞外多糖菌株的筛选及其对土壤团聚体的影响[J]. 江西农业大学学报, 2017, 39(4):772-779.
[69]RAAIJMAKERS J M, PAULITZ T C, STEINBERG C, et al. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant and Soil, 2009, 321(1):341-361.
[70]戚韩英,汪文斌,郑昱,等. 生物膜形成机理及影响因素探究[J]. 微生物学通报, 2013, 40(4):677-685.
[71]MOENS M, BRANCO R, MORAIS P V. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels[J]. World Journal of Microbiology & Biotechnology, 2020, 36(2):1-11.
[72]APPENROTH K J. What are ‘heavy metals’ in Plant Sciences?[J]. Acta Physiologiae Plantarum, 2010, 32(4):615-619.
[73]GROVER M, ALI S Z, SANDHYA V, et al. Role of microorganisms in adaptation of agriculture crops to abiotic stresses[J]. World Journal of Microbiology & Biotechnology, 2011, 27(5):1231-1240.
[74]GAURI S S, MANDAL S M, PATI B R. Impact of Azotobacter exopolysaccharides on sustainable agriculture[J]. Applied Microbiology and Biotechnology, 2012, 95(2):331-338.
[75]ZONG H, LI K, LIU S, et al. Improvement in cadmium tolerance of edible rape (Brassica rapa L.) with exogenous application of chitooligosaccharide[J]. Chemosphere, 2017, 181:92-100.
[76]ZAINAB N, DIN B U, JAVED M T, et al. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils[J]. Plant Physiology and Biochemistry, 2020, 152:90-99.
[77]BHAGAT N, RAGHAV M, DUBEY S, et al. Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance[J]. Journal of Microbiology and Biotechnology, 2021, 31(8):1045-1059.
[78]CHOUDHURY F K, RIVERO R M, BLUMWALD E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5):856-867.
[79]JANCZAREK M, RACHWA K, MARZEC A, et al. Signal molecules and cell-surface components involved in early stages of the legume-rhizobium interactions[J]. Applied Soil Ecology, 2015, 85:94-113.
[80]MENESES C, GONALVES T, ALQUéRES S, et al. Gluconacetobacter diazotrophicus exopolysaccharide protects bacterial cells against oxidative stress in vitro and during rice plant colonization[J]. Plant and Soil, 2017, 416(1/2):133-147.
[81]LOIX C, HUYBRECHTS M, VANGRONSVELD J, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants[J]. Frontiers in Plant Science, 2017, 8:1-19.
[82]赵泽文,杨政宁,万琳,等. 菌糠多糖对铜离子胁迫下水稻种子萌发的影响[J]. 农业环境科学学报, 2020, 39(3):473-481.
[83]祁伟亮,孙万仓,马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究, 2021, 39(3):69-81,193.
[84]CHAIWANON J, WANG W F, ZHU J Y, et al. Information integration and communication in plant growth regulation[J]. Cell, 2016, 164(6):1257-1268.
[85]BEGUM N, QIN C, AHANGER M A, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance[J]. Frontiers in Plant Science, 2019, 10:1-15.
[86]ZANDER M, LEWSEY M G, CLARK N M, et al. Integrated multi-omics framework of the plant response to jasmonic acid[J]. Nature Plants, 2020, 6(3):290-302.
[87]ZHAO X M, CHEN S, WANG S S, et al. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: a multi-omics study[J]. Frontiers in Plant Science, 2020, 10:1-17.
[88]HANUS-FAJERSKA E, CIARKOWSKA K, MUSZYN′SKA E. Long-term field study on stabilization of contaminated wastes by growing clonally reproduced Silene vulgaris calamine ecotype[J]. Plant and Soil, 2019, 439(1/2):431-445.
[89]ZHANG C Y, WANG M H, GAO X Z, et al. Multi-omics research in albino tea plants: past, present, and future[J]. Scientia Horticulturae, 2020, 261:1-11.
[90]MOHITE B V, KOLI S H, PATIL S V. Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans[J]. Applied Biochemistry and Biotechnology, 2018, 186(1):199-216.
[91]KILIC N K, DOENMEZ G. Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp.[J]. Journal of Hazardous Materials, 2008, 154(1/3):1019-1024.
[92]JOULAK I, FINORE I, NICOLAUS B, et al. Evaluation of the production of exopolysaccharides by newly isolated Halomonas strains from Tunisian hypersaline environments[J]. International Journal of Biological Macromolecules, 2019, 138:658-666.
[93]ZHOU Y, CUI Y H, QU X J. Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: a review[J]. Carbohydrate Polymers, 2019, 207:317-332.
[94]CHENG X, HUANG L, LI K T. Antioxidant activity changes of exopolysaccharides with different carbon sources from Lactobacillus plantarum LPC-1 and its metabolomic analysis[J]. World Journal of Microbiology & Biotechnology, 2019, 35(5):1-13.
[95]MOHANRAM S, KUMAR P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions[J]. Annals of Microbiology, 2019, 69(4):307-320.
[96]杨璐,周蓓蓓,侯亚玲,等. 枯草芽孢杆菌菌剂对盐胁迫下冬小麦生长与土壤水氮分布的影响[J].排灌机械工程学报,2021,39(5):517-524.
[97]GUPTA R, SINGH A, SRIVASTAVA M, et al. Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress[J]. Microbiological Research, 2019, 218:87-96.
[98]MAHDHI M, TOUNEKTI T, KHEMIRA H. Effects of Prosopis juliflora on germination, plant growth of Sorghum bicolor, mycorrhiza and soil microbial properties[J]. Allelopathy Journal, 2019, 46(2):265-275.
[99]BRUNEL C, BEIFEN Y, POUTEAU R, et al. Responses of rhizospheric microbial communities of native and alien plant species to Cuscuta parasitism[J]. Microbial Ecology, 2019, 79(3):617-630.
[100]GAO M L, DONG Y M, ZHANG Z, et al. Effect of dibutyl phthalate on microbial function diversity and enzyme activity in wheat rhizosphere and non-rhizosphere soils[J]. Environmental Pollution, 2020, 265:1-14.
[101]MUANPRASAT C, CHATSUDTHIPONG V. Chitosan oligosaccharide: biological activities and potential therapeutic applications[J]. Pharmacology & Therapeutics, 2017, 170:80-97.
[102]LI Y Y, ZHANG Q Q, OU L N, et al. Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide[J]. Agronomy, 2020, 10(6):915-927.
[103]BOSE S K, HOWLADER P, WANG W, et al. Oligosaccharide is a promising natural preservative for improving postharvest preservation of fruit: a review[J]. Food Chemistry, 2021, 341:1-13.
[104]NAVEED M, PHIL L, SOHAIL M, et al. Chitosan oligosaccharide (COS): an overview[J]. International Journal of Biological Macromolecules, 2019, 129:827-843.
[105]CHEONG K L, QIU H M, DU H, et al. Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications[J]. Molecules, 2018, 23(10): 1-18.

相似文献/References:

[1]史云娇,刘芳,孙芝兰,等.藏羊肉中优势腐败不动杆菌的分离鉴定及其生物膜形成特性[J].江苏农业学报,2019,(01):195.[doi:doi:10.3969/j.issn.1000-4440.2019.01.028]
 SHI Yun-jiao,LIU Fang,SUN Zhi-lan,et al.Isolation and identification of Acinetobacter in Tibetan mutton and the biofilm formation characteristics[J].,2019,(04):195.[doi:doi:10.3969/j.issn.1000-4440.2019.01.028]
[2]汤纯,史云娇,卞欢,等.食源性克雷伯氏菌的分离鉴定与生物膜形成特性[J].江苏农业学报,2019,(05):1216.[doi:doi:10.3969/j.issn.1000-4440.2019.05.031]
 TANG Chun,SHI Yun-jiao,BIAN Huan,et al.Isolation,identification and biofilm formation characteristics of Klebsiella species in fresh duck blood[J].,2019,(04):1216.[doi:doi:10.3969/j.issn.1000-4440.2019.05.031]
[3]赵友学,杨燕波,朱宇峰,等.内生细菌Pantoea alhagi NX-11及其胞外多糖对低温胁迫下水稻苗的促生效应[J].江苏农业学报,2022,38(02):296.[doi:doi:10.3969/j.issn.1000-4440.2022.02.002]
 ZHAO You-xue,YANG Yan-bo,ZHU Yu-feng,et al.Effects of endophytic bacterium Pantoea alhagi NX-11 and its extracellular polysaccharides on the growth of paddy rice seedlings under low temperature stress[J].,2022,38(04):296.[doi:doi:10.3969/j.issn.1000-4440.2022.02.002]

备注/Memo

备注/Memo:
收稿日期:2021-12-21基金项目:江西省自然科学基金项目(20202BABL205019);江西省教育厅科技计划项目(GJJ180211)作者简介:魏宏宇(1998-),男,江西南昌人,硕士研究生,主要从事农业微生物资源研究。(E-mail)hongyu_wei@yeah.net 通讯作者:李昆太,(E-mail)atai78@sina.com;程新,(E-mail)xincheng@jxau.edu.cn
更新日期/Last Update: 2022-09-06