[1]徐重新,谢雅晶,何鑫,等.凝集素在农业和食品领域中的应用研究进展[J].江苏农业学报,2022,38(04):1135-1144.[doi:doi:10.3969/j.issn.1000-4440.2022.04.033]
 XU Chong-xin,XIE Ya-jing,HE Xin,et al.Research progress of the application of lectin in agriculture and food[J].,2022,38(04):1135-1144.[doi:doi:10.3969/j.issn.1000-4440.2022.04.033]
点击复制

凝集素在农业和食品领域中的应用研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1135-1144
栏目:
综述
出版日期:
2022-08-31

文章信息/Info

Title:
Research progress of the application of lectin in agriculture and food
作者:
徐重新12谢雅晶1何鑫1仲建锋1刘媛12张霄1刘贤金12
(1.江苏省农业科学院农产品质量安全与营养研究所/省部共建国家重点实验室培育基地—江苏省食品质量安全重点实验室,江苏南京210014;2.江苏大学食品与生物工程学院,江苏镇江212013)
Author(s):
XU Chong-xin12XIE Ya-jing1HE Xin1ZHONG Jian-feng1LIU Yuan12ZHANG Xiao1LIU Xian-jin12
(1.Institute of Food Safety and Nutrition/Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)
关键词:
凝集素农作物病虫害农业生物防控食源性致病微生物食品质量安全
Keywords:
lectincrop diseases and pestsagricultural biological controlfoodborne pathogenic microorganismsfood quality safety
分类号:
Q946.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.033
文献标志码:
A
摘要:
凝集素是一类能与糖及糖类物质特异性非共价可逆结合的蛋白质或糖蛋白,广泛存在于动植物和微生物体内。部分凝集素具有抗虫、抗菌、抗病毒以及靶向识别特定微生物种类等功能,因而成为农业绿色防控和食品防腐保鲜及致病微生物筛查检测领域研究的热点。本文系统梳理了国内外有关凝集素在农业病虫害防控、农业生产调节、食源性致病微生物防控及筛查检测等方面的应用研究状况,并探讨了其在这些方面的应用前景、存在问题及解决问题的对策,旨在为农业绿色防控和食品防腐保鲜及农产品质量安全检测研究提供最新的文献资料和思路。
Abstract:
Lectin is a kind of protein or glycoprotein which can combine with sugars and saccharides in a specific, non-covalent and reversible manner, and it is widely found in animals, plants and microorganisms. Partial lectins have the functions of anti-insect, anti-bacterial, anti-virus and targeted recognition of specific microbial species. Therefore, they have become the research focus in the fields of agricultural green prevention and control, food anti-corrosion and preservation, and screening and detection of pathogenic microorganisms. In this paper, the application and research status of lectins in the prevention and control of agricultural diseases and pests, regulation of agricultural production, and prevention, control, screening and detection of foodborne pathogenic microorganisms were systematically reviewed. The application prospect, existing problems and solutions were also discussed to provide the latest references and potential innovative ideas for agricultural green prevention and control, food anti-corrosion and preservation and quality safety testing research of agricultural products.

参考文献/References:

[1]MAJEED M, HAKEEM K R, REHMAN R U. Mistletoe lectins: from interconnecting proteins to potential tumour inhibiting agents[J]. Phytomedicine Plus, 2021, 1(3): 100039.
[2]LACERDA J T, LACERDA R R, ASSUNCAO N A, et al. New insights into lectin from Abelmoschus esculentus seeds as a kunitz-type inhibitor and its toxic effects on Ceratitis capitata and root-knot nematodes Meloidogyne spp.[J]. Process Biochemistry, 2017, 63: 96-104.
[3]SONG P W, ZHANG L F, WU L L, et al. A ricin B-like lectin protein physically interacts with TaPFT and is involved in resistance to fusarium head blight in wheat[J]. Phytopathology, 2021, 111(12):2309-2316.
[4]JIN X, LEE Y J, HONG S H. Canavalia ensiformis-derived lectin inhibits biofilm formation of enterohemorrhagic Escherichia coli and Listeria monocytogenes[J]. Journal of Applied Microbiology, 2019, 126(1): 300-310.
[5]WU M J, TONG C Q, WU Y, et al. A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities[J]. Food Chemistry, 2016, 201: 7-13.
[6]HE Z Y, ZOU T, XIAO Q, et al. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation[J]. Development, 2021, 148(6): 196378.
[7]SILVA M L S. Lectin-based biosensors as analytical tools for clinical oncology[J]. Cancer Letters, 2018, 436: 63-74.
[8]MI F, GUAN M, HU C M, et al. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review[J]. Analyst, 2021, 146(2): 429-443.
[9]SHARMA A, KUMAR V, SHAHZAD B, et al. Worldwide pesticide usage and its impacts on ecosystem[J]. SN Applied Sciences, 2019, 1(11): 1446.
[10]BEN Y, FU C, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review[J]. Environmental Research, 2019, 169: 483-493.
[11]ALSALOOM A N. Biochemical characterization of wheat seed lectin and its antifungal activity against seed-borne Fusarium graminearum in-vitro and in-situ[J]. Pakistan Journal of Botany, 2021, 53(2): 741-747.
[12]KUMAR D, SHEKHAR S, BISHT S, et al. Ectopic overexpression of lectin in transgenic Brassica juncea plants exhibit resistance to fungal phytopathogen and showed alleviation to salt and drought stress[J]. Journal of Bioengineering and Biomedical Science, 2015, 5(1): 147-154.
[13]GHOSH P, SEN S, CHAKRABORTY J, et al. Monitoring the efficacy of mutated Allium sativum leaf lectin in transgenic rice against Rhizoctonia solani[J]. BMC Biotechnology, 2016, 16: 24-33.
[14]AL-SAMAN M A, FARFOUR S A, TAYEL A A, et al. Bioactivity of lectin from Egyptian Jatropha curcas seeds and its potentiality as antifungal agent[J]. Global Advanced Research Journal of Microbiology, 2015, 4(7): 87-97.
[15]RIO M D, CANAL L, PINEDO M, et al. Internalization of a sunflower mannose-binding lectin into phytopathogenic fungal cells induces cytotoxicity[J]. Journal of Plant Physiology, 2018, 221: 22-31.
[16]SILVA S P, SILVA J D, COSTA C B, et al. Purification, characterization, and assessment of antimicrobial activity and toxicity of Portulaca elatior leaf lectin (PeLL)[J]. Probiotics and Antimicrobial Proteins,2021,https://doi.org/10.1007/s12602-021-09837.
[17]ZHANG W, BOUWMAN K M, BEURDEN S J, et al. Chicken mannose binding lectin has antiviral activity towards infectious bronchitis virus[J]. Virology, 2017, 509: 252-259.
[18]CASTANHEIRA L, SOUZA D L, SILVA R J, et al. Insights into anti-parasitism induced by a C-type lectin from Bothrops pauloensis venom on Toxoplasma gondii[J]. International Journal of Biological Macromolecules, 2015, 74: 568-574.
[19]MORADI A, EL-SHETEHY M, GAMIR J, et al. Expression of a fungal lectin in Arabidopsis enhances plant growth and resistance toward microbial pathogens and a plant-parasitic nematode[J]. Frontiers in Plant Science, 2021, 12: 657451.
[20]CHANDRASEKARAN G, LEE Y C, PARK H, et al. Antibacterial and antifungal activities of lectin extracted from fruiting bodies of the Korean cauliflower medicinal mushroom, Sparassis latifolia (Agaricomycetes)[J]. International Journal of Medicinal Mushrooms, 2016, 18(4): 291-299.
[21]SUN H, ZHAO C G, TONG X, et al. A lectin with mycelia differentiation and antiphytovirus: activities from the edible mushroom Agrocybe aegerita[J]. Journal of Biochemistry and Molecular Biology, 2003, 36(2): 214-222.
[22]RANI S, SHARMA V, HADA A, et al. Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledons explants[J]. Acta Physiologiae Plantarum, 2017, 39(5): 115-127.
[23]周英,谢红卫,刘长爱,等. 豆科凝集素基因Le4的克隆及其表达产物对蚜虫的抗性[J]. 基因组学与应用生物学, 2016, 35(12): 3474-3480.
[24]NGUGI-DAWIT A, HOANG T M, WILLIAMS B, et al. A wild Cajanus scarabaeoides L., Thouars, IBS 3471, for improved insect-resistance in Cultivated Pigeonpea[J]. Agronomy, 2020, 10(4):517-531.
[25]BODDUPALLY D, TAMIRISA S, GUNDRA S R, et al. Expression of hybrid fusion protein (Cry1Ac::ASAL) in transgenic rice plants imparts resistance against multiple insect pests[J]. Scientific Reports, 2018, 8(1): 8458.
[26]DIN S U, AZAM S, RAO A Q, et al. Development of broad-spectrum and sustainable resistance in cotton against major insects through the combination of Bt and plant lectin genes[J]. Plant Cell Reports, 2021, 40(4): 707-721.
[27]JAVAID S, AMIN I, JANDER G, et al. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters[J]. Scientific Reports, 2016, 6: 34706.
[28]AHMED M, SHAH A D, RAUF M, et al. Ectopic expression of the Leptochloa fusca and Allium cepa lectin genes in tobacco plant for resistance against Mealybug (Phenococcus solenopsis)[J]. Journal of Genetics and Genomes, 2017, 1(2): 108-114.
[29]ZIBAEE A, ALBORZI Z, KARIMI-MALATI A, et al. Effects of a lectin from Polygonum Persicaria L. on Pieris Brassicae L. (Lepidoptera: Pieridae)[J]. Journal of Plant Protection Research, 2014, 54(3): 250-257.
[30]RAHIMI V, HAJIZADEH J, ZIBAEE A, et al. Toxicity and physiological effects of an extracted lectin from Polygonum persicaria L. on Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)[J]. Physiological and Molecular Plant Pathology, 2018, 101: 38-44.
[31]KAUR M, THAKUR K, KAMBOJ S S, et al. Assessment of Sauromatum guttatum lectin toxicity against Bactrocera cucurbitae[J]. Journal of Environmental Biology, 2015, 36(6): 1263-1268.
[32]DUAN X, HOU Q, LIU G, et al. Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids[J]. Molecules, 2018, 23(4): 748-757.
[33]RAMZI S, SAHRAGARD A, SENDI J J, et al. Effect of Citrullus colocynthis L. (Cucurbitaceae) agglutinin on gene expression of caspases in Ectomyelois ceratoniae Zeller (Lepidoptera: Crambidae)[J]. Journal of Entomological and Acarological Research, 2016, 48(3): 304-307.
[34]RAMZI S, SAHRAGARD A, SENDI J J, et al. Effect of Citrullus colocynthis (Cucurbitaceae) agglutinin on the life table parameters of Apomyelois ceratoniae (Lepidoptera: Pyralidae)[J]. Journal of Crop Protection, 2015, 5(1): 19-31.
[35]OLIVEIRA C F R, MOURA M C, NAPOLEAO T H, et al. A chitin-binding lectin from Moringa oleifera seeds (WSMoL) impairs the digestive physiology of the Mediterranean flour larvae, Anagasta kuehniella[J]. Pesticide Biochemistry and Physiology, 2017, 142: 67-76.
[36]MACEDO M L, FREIRE M, SILVA M B, et al. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae)[J]. Comparative Biochemistry and Physiology, 2007, 146(4): 486-498.
[37]赵亚楠,李刚强,王楠,等. 转GNA和ACA双基因抗蚜虫棉花新材料的创制[J]. 分子植物育种, 2021, 19(20): 6731-6740.
[38]MARTINEZ Z, SCHUTTER K D, DAMME E J, et al. Accelerated delivery of dsRNA in lepidopteran midgut cells by a Galanthus nivalis lectin (GNA)-dsRNA-binding domain fusion protein[J]. Pesticide Biochemistry and Physiology, 2021, 175: 104853.
[39]HE P, WU S, TIAN L, et al. Expression of modified snowdrop lectin (Galanthus nivalis agglutinin) protein confers insect resistance in Arabidopsis and cotton[J]. Research Square, 2020, https://doi.org/10.21203/rs.3.rs-32036/v1.
[40]DUAN X, HOU Q. Expression of two synthetic lectin genes sGNA and sNTL in transgenic wheat enchanced resistance to aphids[J]. Research Journal of Biotechnology, 2015, 10(7): 11-18.
[41]LIMA J K, CHICUTA C P, COSTA M M, et al. Biotoxicity of aqueous extract of Genipa americana L. bark on red flour beetle Tribolium castaneum (Herbst)[J]. Industrial Crops and Products, 2020, 156: 112874.
[42]GEORGE B S, SILAMBARASAN S, SENTHIL K, et al. Characterization of an insecticidal protein from Withania somnifera against Lepidopteran and Hemipteran pest[J]. Molecular Biotechnology, 2018, 60(4): 290-301.
[43]CAMAROTI J R, ALMEIDA W A, BELMONTE B R, et al. Sitophilus zeamais adults have survival and nutrition affected by Schinus terebinthifolius leaf extract and its lectin (SteLL)[J]. Industrial Crops and Products, 2018, 116: 81-89.
[44]SADANANDAN R, RAUF A A. Antifungal and insecticidal activity of a lectin isolated from marine sponge Fasciospongia cavernosa[J]. Journal of Advances in Biological Science, 2021, 8(1): 19-25.
[45]MORADI A, AUSTERLITZ T, DAHLIN P, et al. Marasmius oreades agglutinin enhances resistance of Arabidopsis against plant-parasitic nematodes and a herbivorous insect[J]. BMC Plant Biology, 2021, 21(1): 402-411.
[46]BLEULER-MARTINEZ S, STUTZ K, SIEBER R, et al. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes[J]. Glycobiology, 2017, 27(5): 486-500.
[47]ALBORZI Z, ZIBAEE A, RAMZI S, et al. Effects of the two extracted agglutinins from Rhizoctonia solani Kühn (Cantharellales: Ceratobasidiaceae) on digestive Α-amylase of Pieris brassicae L. (Lepidoptera: Pieridae)[J]. Journal of Nutrition and Food Sciences, 2016, 6(4): 526-532.
[48]BHAGAT Y S, BHAT R S, KOLEKAR R M, et al. Remusatia vivipara lectin and Sclerotium rolfsii lectin interfere with the development and gall formation activity of Meloidogyne incognita in transgenic tomato[J]. Transgenic Research, 2019, 28(3/4): 299-315.
[49]VANTI G L, KATAGERI I S, INAMDAR S R, et al. Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton[J]. Journal of Biotechnology, 2018, 278: 20-27.
[50]VANTI G L, VISHWANATHREDDY V H, BHAT G G, et al. Sclerotium rolfsii lectin expressed in tobacco confers protection against Spodoptera litura and Myzus persicae[J]. Journal of Pest Science, 2015, 89(2): 591-602.
[51]SOUSA A S, REGAO E J L, SANTOS F A. Viability and action of CPL lectin on in vitro germinability of pollen grains of Malpighia emarginata DC.(Malpighiaceae)[J]. American Journal of Plant Sciences, 2013, 4(7): 53-58.
[52]ALENKINA S A, ROMANOV N I, NIKITINA V E. Regulation by Azospirillum lectins of the activity of antioxidant enzymes in wheat seedling roots under short-term stresses[J]. Brazilian Journal of Botany, 2018, 41(3): 579-587.
[53]ALENKINA S A, KUPRYASHINA M A. Influence of Azospirillum lectins on the antioxidant system response in wheat seedling roots during abiotic stress[J/OL].Soil Research, 2021, https://doi.org/10.1071/SR21092.
[54]LAMBIN J, ASCI S D, DUBIEL M, et al. OsEUL lectin gene expression in rice: stress regulation, subcellular localization and tissue specificity[J]. Frontiers in Plant Science, 2020, 11: 185-200.
[55]SREEVIDYA V S, HERNANDEZ-OANE R J, SO R B, et al. Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice[J]. Plant Science, 2005, 169(4): 726-736.
[56]李丹彤,张静,陈国栋,等. 裙带菜凝集素对日本对虾非特异性免疫因子的影响[J]. 大连水产学院学报, 2009, 24(3): 274-278.
[57]田园,李莹,张艳丽,等. 外源刀豆凝集素对菲律宾蛤仔免疫机能的影响[J]. 现代农业科技, 2020, 27(8): 221-223.
[58]FREITAS J, SANTANA K V, NASCIMENTO A C C, et al. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water[J]. Chemosphere, 2016, 163: 133-141.
[59]徐重新,张存政,刘媛,等. 食源性致病微生物危害风险及其防控用抗菌生物活性肽研究进展[J]. 生物技术通报, 2019, 35(7): 202-212.
[60]SILVA P M, SILVA J N O, SILVA B R, et al. Antibacterial effects of the lectin from pomegranate sarcotesta (PgTeL) against Listeria monocytogenes[J]. Journal of Applied Microbiology, 2021, 131(2): 671-681.
[61]HIREMATH K Y, JAGADEESH N, BELUR S, et al. A lectin with anti-microbial and anti proliferative activities from Lantana camara, a medicinal plant[J]. Protein Expression and Purification, 2020, 170: 105574.
[62]MOURA M C, NAPOLEAO T H, CORIOLANO M C, et al. Water-soluble Moringa oleifera lectin interferes with growth, survival and cell permeability of corrosive and pathogenic bacteria[J]. Journal of Applied Microbiology, 2015, 119(3): 666-676.
[63]FERREIRA R S, NAPOLEAO T H, SANTOS A F, et al. Coagulant and antibacterial activities of the water-soluble seed lectin from Moringa oleifera[J]. Letters in Applied Microbiology, 2011, 53(2): 186-192.
[64]OLIVEIRA M D, ANDRADE C A, SANTOS-MAGALHAES N S, et al. Purification of a lectin from Eugenia uniflora L. seeds and its potential antibacterial activity[J]. Letters in Applied Microbiology, 2008, 46(3): 371-376.
[65]PREETHAM E, LAKSHMI S, WONGPANYA R, et al. Antibiofilm and immunological properties of lectin purified from shrimp Penaeus semisulcatus[J]. Fish and Shellfish Immunology, 2020, 106: 776-782.
[66]杨晴晴,金祎雯,李伟,等. 基于蛋白质组学的菲律宾蛤仔凝集素(CL-T)抑制腐败希瓦氏菌机理研究[J]. 大连海洋大学学报, 2021, 36(4): 653-660.
[67]赵泽慧,爱娇,杨雨澄,等. 香港牡蛎(Crassostrea hongkongensis)新型凝集素ChPerlucin 的基因克隆与功能研究[J]. 热带海洋学报, 2022, 41(1): 42-51.
[68]JAYANTHI S, SHANTHI S, VASEEHARAN B, et al. Growth inhibition and antibiofilm potential of Ag nanoparticles coated with lectin, an arthropod immune molecule[J]. Journal of Photochemistry and Photobiology B: Biology, 2017, 170: 208-216.
[69]FANG Z Y, LI D, LI X J, et al. A single CRD C-type lectin from Eriocheir sinensis (EsLecB) with microbial-binding, antibacterial prophenoloxidase activation and hem-encapsulation activities[J]. Fish and Shellfish Immunology, 2016, 50: 175-190.
[70]PETROVA M I, IMHOLZ N C, VERHOEVEN T L, et al. Lectin-like molecules of Lactobacillus rhamnosus GG inhibit pathogenic Escherichia coli and Salmonella biofilm formation[J]. PLoS One, 2016, 11(8): e0161337.
[71]SARAVANAN A, KUMAR P S, HEMAVATHY R V, et al. Methods of detection of food-borne pathogens: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 189-207.
[72]DAO T N T, YOON J, JIN C E, et al. Rapid and sensitive detection of Salmonella based on microfluidic enrichment with a label-free nanobiosensing platform[J]. Sensors Actuators B: Chemical, 2018, 262: 588-594.
[73]SAUCEDO N M, GAO Y, PHAM T, et al. Lectin-and saccharide-functionalized nano-chemiresistor arrays for detection and identification of pathogenic bacteria infection[J]. Biosensors, 2018, 8(3): 63-73.
[74]HE X, ZHOU L, HE D, et al. Rapid and ultrasensitive E.coli O157:H7 quantitation by combination of ligandmagnetic nanoparticles enrichment with fluorescent nanoparticles based two-color flow cytometry[J]. Analyst, 2011, 136(20): 4183-4191.
[75]ANN G C. Real-time detection of Escherichia coli using biosensors functionalized with lectin and carbon-hydrogel nanostructures[D]. Texas (USA):Texas A & M University, 2016.
[76]XU X H, YUAN Y W, HU G X, et al. Exploiting pH-regulated dimer-tetramer transformation of concanavalin A to develop colorimetric biosensing of bacteria[J]. Scientific Reports, 2017, 7(1): 1-8.
[77]YANG H Y, ZHOU H F, HAO H Y, et al. Detection of Escherichia coli with a label-free impedimetric biosensor based on lectin functionalized mixed self-assembled monolayer[J]. Sensors Actuators B: Chemical, 2016, 229: 297-304.
[78]ZHENG L, WAN Y, QI P, et al. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection[J]. Talanta, 2017, 167: 600-606.
[79]MIKAELYAN M V, POGHOSYAN G G, HENDRICKSON O D, et al. Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: a simple photometric assay[J]. Analytica Chimica Acta, 2017, 981: 80-85.
[80]KO S M, KWON J, VAIDYA B, et al. Development of lectin-linked immunomagnetic separation for the detection of hepatitis a virus[J]. Viruses, 2014, 6(3):1037-1048.
[81]LOPEZ-TELLEZ J, SANCHEZ-ORTEGA I, HORNUNG-LEONI CT, et al. Impedimetric biosensor based on a Hechtia argentea lectin for the detection of Salmonella spp.[J]. Chemosensors, 2020, 8(4): 115-126.
[82]CHENG S, TU Z, ZHENG S, et al. An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tags[J]. Analytica Chimica Acta, 2021, 1187: 339155.
[83]RAGHU H V, KUMAR N. Rapid detection of Listeria monocytogenes in milk by surface plasmon resonance using wheat germ agglutinin[J]. Food Analytical Methods, 2020, 13(4): 982-991.
[84]LI Z, FU Y, FANG W, et al. Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157:H7 with signal amplification using lectin[J]. Sensors, 2015, 15(8): 19212-19224.
[85]WANG Y, Y E C, SI Z F, et al. Monitoring of Escherichia coli O157:H7 in food samples using lectin based surface plasmon resonance biosensor[J]. Food Chemistry, 2013, 136(3/4): 1303-1308.
[86]YAGHOUBI M, RAHIMI F, NEGAHDARI B, et al. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode[J]. Scientific Reports, 2020, 10(1): 16017.
[87]HARITO J B, CAMPBELL A T, TYSNES K R, et al. Use of lectin-magnetic separation (LMS) for detecting Toxoplasma gondii oocysts in environmental water samples[ J]. Water Research, 2017, 127: 68-76.
[88]HOVHANNISYAN V A, BAZUKYAN I L, GASPARYAN V K. Application of silver nanoparticles and CdSe quantum dots sensitized with of C-like lectin for detection of St. aureus. comparison of various approaches[J]. Talanta, 2017, 175: 366-369.
[89]杨晴晴,陈悦,李伟,等. 菲律宾蛤仔凝集素在小黄鱼保鲜中的应用研究[J]. 江苏农业科学, 2018, 46(20): 219-221.
[90]CARRASCO-CASTILLA J, HERNANDEZ-LVAREZ A J, JIMENEZ-MARTINEZ C, et al. Antioxidant and metal chelating activities of Phaseolus vulgaris L. var. Jamapa protein isolates, phaseolin and lectin hydrolysates[J]. Food Chemistry, 2012, 131(4): 1157-1164.
[91]SAHA R K, TUHIN S H M, ROY N J, et al. Antibacterial and antioxidant activities of a food lectin isolated from the seeds of Lablab purpureous[J]. American Journal of Ethnomedicine, 2014, 24(1): 8-17.
[92]LACERDA E L, NASCIMENTO E S, LACERDA J T, et al. Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities[J]. International Journal of Biological Macromolecules, 2017, 95: 1072-1081.
[93]RAJALAKSHMI B S, VASANTHY M, RAJAKANNAN V, et al. Defluoridation of water with a coagulant, Strychnos potatorum L. seed-agglutinin[J]. Environmental Technology & Innovation, 2021, 24: 101983.
[94]ZHANG A, NAKANISHI J. Improved anti-cancer effect of epidermal growth factor-gold nanoparticle conjugates by protein orientation through site-specific mutagenesis[J]. Science and Technology of Advanced Materials, 2021, 22(1): 616-626.
[95]SINHA R, SHUKLA P. Current trends in protein engineering: updates and progress[J]. Current Protein and Peptide Science, 2019, 20(5): 398-407.
[96]GUI W, DAVIDSON G A, ZHUANG Z. Chemical methods for protein site-specific ubiquitination[J]. RSC Chemical Biology, 2021, 2(2): 450-467.
[97]ZHANG Q, LI L, LAN Q, et al. Protein glycosylation: a promising way to modify the functional properties and extend the application in food system[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(15): 2506-2533.

相似文献/References:

[1]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]

备注/Memo

备注/Memo:
收稿日期:2021-12-25基金项目:国家自然科学基金项目(31972292、31701724、31630061) 作者简介:徐重新(1987-),男,湖南新田人,博士,助理研究员,主要从事农产品质量安全控制研究。(E-mail)hhxyxcx@163.com通讯作者:刘媛,(E-mail) liuyuan@jaas.ac.cn; 刘贤金,(E-mail)jaasliu@jaas.ac.cn
更新日期/Last Update: 2022-09-06