参考文献/References:
[1]GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[2]JU X T, XING G X, CHEN X P, Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
[3]GAO Y, JIA Y, YU G, et al. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China[J]. Journal of Cleaner Production, 2019, 208: 530-540.
[4]JIAN C, ZHOU J, PENG Y, et al. Atmospheric wet deposition of nitrogen and sulfur to a typical red soil agroecosystem in Southeast China during the ten-year monsoon seasons (2003–2012)[J]. Atmospheric Environment, 2014, 82: 121-129.
[5]CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715.
[6]MEUNIER C L, GUNDALE M J, SANCHEZ I S, et al. Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments[J]. Global Change Biology, 2016, 22(1): 164-179.
[7]GAO Y, HAO Z, YANG T T, et al. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: a Chinese case study[J]. Environmental Pollution, 2017, 226: 69-78.
[8]HE C E, WANG X, LIU X, et al. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems[J]. Ecological Applications, 2010, 20(1): 80-90.
[9]WANG Z, ZHANG X Y, LIU L, et al. Evaluating the effects of nitrogen deposition on rice ecosystems across China[J]. Agriculture, Ecosystems & Environment, 2019, 285: 106617.
[10]ZHANG Y, LIU C, LIU X J, et al. Atmospheric nitrogen deposition around the Dongting Lake, China[J]. Atmospheric Environment, 2019, 207: 197-204.
[11]XIE Y X, XIONG Z Q, XING G X, et al. Source of nitrogen in wet deposition to a rice agroecosystem at Tai lake region[J]. Atmospheric Environment, 2008, 42(21): 5182-5192.
[12]卢俊平,马太玲,张晓晶,等. 典型沙源区水库大气氮干、湿沉降污染特征研究[J]. 农业环境科学学报, 2015, 34(12): 2357-2363.
[13]安徽省统计局. 安徽统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
[14]魏东霞,李璇,赵禹恒,等. 合肥科学岛大气氮磷沉降及对巢湖影响的分析[J]. 合肥工业大学学报(自然科学版), 2018,41(9): 1259-1266.
[15]朱潇,王杰飞,沈健林,等. 亚热带农田和林地大气氮湿沉降与混合沉降比较[J]. 环境科学, 2018, 39(6): 2557-2565.
[16]XU W, ZHAO Y H, LIU X J, et al. Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution[J]. Environmental Pollution,2018, 232: 546-555.
[17]刘冬碧,张小勇,巴瑞先,等. 鄂西北丹江口库区大气氮沉降[J]. 生态学报, 2015, 35(10): 3419-3427.
[18]任加国,贾海斌,焦立新,等. 滇池大气沉降氮磷形态特征及其入湖负荷贡献[J]. 环境科学, 2019, 40(2): 582-589.
[19]杨龙元,秦伯强,胡维平,等. 太湖大气氮、磷营养元素干湿沉降率研究[J]. 海洋与湖沼, 2007(2): 104-110.
[20]刘涛,杨柳燕,胡志新,等. 太湖氮磷大气干湿沉降时空特征[J]. 环境监测管理与技术, 2012, 24(6): 20-24.
[21]TI C P, GAO B, LUO Y X, et al. Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China[J]. Atmospheric Environment, 2018, 190: 1-9.
[22]王江飞,周柯锦,汪小泉,等. 杭嘉湖地区大气氮、磷沉降特征研究[J]. 中国环境科学, 2015, 35(9): 2754-2763.
[23]王体健,刘倩,赵恒,等. 江西红壤地区农田生态系统大气氮沉降通量的研究[J]. 土壤学报, 2008,45(2): 280-287.
[24]彭畅,牛红红,李强,等. 吉林省中部农田生态系统降雨湿沉降氮特征[J]. 土壤通报, 2015, 46(4): 955-961.
[25]刘文竹,王晓燕,樊彦波. 大气氮沉降及其对水体氮负荷估算的研究进展[J]. 环境污染与防治, 2014, 36(5): 88-93.
[26]郑祥洲,张玉树,丁洪,等. 闽西北农田生态系统中大气氮湿沉降研究[J]. 水土保持学报, 2012, 26(3): 127-130.
[27]SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105.
[28]朱小红,马中文,马友华,等. 施肥对巢湖流域稻季氨挥发损失的影响[J]. 生态学报, 2012, 32(7): 2119-2126.
[29]LIU X J, JU X T, ZHANG Y, et al. Nitrogen deposition in agroecosystems in the Beijing area[J]. Agriculture, Ecosystems and Environment, 2006,113(1): 370-377.
[30]ZHANG Y, SONG L, LIU X J, et al. Atmospheric organic nitrogen deposition in China[J]. Atmospheric Environment, 2012, 46: 195-204.
[31]SOLINGER S, MATZNER K E. Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest[J]. Biogeochemistry, 2001, 55(3): 327-349.
[32]GALLOWAY M M, CHHABRA P S, CHAN A W H, et al. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions[J]. Atmospheric Chemistry and Physics, 2009, 9(169): 3331-3345.
[33]PERRING A E, PUSEDE S E, COHEN R C. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol[J]. Chemical reviews, 2013,113(8): 5848-5870.
[34]ANEJA V P, ROELLE P A, MURRAY G C, et al. Atmospheric nitrogen compounds Ⅱ: emissions, transport, transformation, deposition and assessment[J]. Atmospheric Environment, 2001,35(11): 1903-1911.
[35]郑利霞,刘学军,张福锁. 大气有机氮沉降研究进展[J]. 生态学报, 2007,27(9): 3828-3834.
[36]YU X, LI D J, LI D, et al. Enhanced wet deposition of water-soluble organic nitrogen during the harvest season: influence of biomass burning and in-cloud scavenging[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(18): e2020JD032699.
[37]CORNELL S E. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component[J]. Environmental Pollution, 2011, 159(10): 2214-2222.
[38]叶雪梅,郝吉明,段雷,等. 中国主要湖泊营养氮沉降临界负荷的研究[J]. 环境污染与防治, 2002(1): 54-58.
[39]KONG X Z, DONG L, HE W, et al. Estimation of the long-term nutrient budget and thresholds of regime shift for a large shallow lake in China[J]. Ecological Indicators, 2015, 52: 231-244.
[40]祁国华,马晓双,何诗瑜,等. 基于多源遥感数据的巢湖水华长时序时空变化(2009—2018年)分析与发生概率预测[J]. 湖泊科学, 2021, 33(2): 414-427.
[41]张民,史小丽,阳振,等. 太湖和巢湖中微囊藻(Microcystis)与长孢藻(Dolichospermum)的长时序变化及其驱动因子[J]. 湖泊科学, 2021, 33(4): 1051-1061.
[42]WAN L L, CHEN X Y, DENG Q H, et al. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis ) and its role in their succession[J]. Harmful Algae, 2019, 84: 46-55.
[43]钱善勤,孔繁翔,张民,等. 铜绿微囊藻和蛋白核小球藻对不同形态有机磷的利用及其生长[J]. 湖泊科学, 2010, 22(3): 411-415.
[44]王锦旗,宋玉芝,黄进. 大气氮沉降对流域总贡献量估算方法研究[J].江苏农业科学,2020,48(11):246-250.
[45]张晓曦,胡嘉伟,王丽洁,等.不同林龄刺槐林地凋落物分解及养分释放对氮沉降的响应差异[J].植物资源与环境学报,2021,30(6):10-18.
[46]LI W, LI B G, TAO S, et al. Source identification of particulate phosphorus in the atmosphere in Beijing[J]. Science of The Total Environment, 2020, 762: 143174.
[47]NASHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants[J]. The New Phytologist, 2009, 182(1): 31-48.
[48]GAO Y, ZHOU F, CIAIS P, et al. Human activities aggravate nitrogen-deposition pollution to inland water over China[J]. National Science Review, 2020, 7(2): 430-440.
[49]GROSS A, NISHRI A, ANGERT A. Use of phosphate oxygen isotopes for identifying atmospheric-P sources: a case study at Lake Kinneret[J]. Environmental Science & Technology, 2013, 47(6): 2721-2727.
相似文献/References:
[1]孙小祥,常志州,靳红梅,等.太湖地区不同秸秆还田方式对作物产量与经济效益的影响[J].江苏农业学报,2017,(01):94.[doi:10.3969/j.issn.1000-4440.2017.01.015
]
SUN Xiao-xiang,CHANG Zhi-zhou,JIN Hong-mei,et al.Influence of different ways of straw incorporation on crop yield and economic benefit in the Taihu Lake Basin[J].,2017,(04):94.[doi:10.3969/j.issn.1000-4440.2017.01.015
]
[2]王夏雯,余翔,乔俊卿,等.西瓜茬后种植稻麦对土壤微生物数量和西瓜枯萎病发生的影响[J].江苏农业学报,2015,(06):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
WANG Xia-wen,YU Xiang,QIAO Jun-qing,et al.Effect of rice-wheat rotation after watermelon season on the amount of soil microbes and the incidence of Fusarium wilt[J].,2015,(04):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
[3]张霞,李健,潘孝青,等.不同熟化垫料替代比例对稻麦轮作下作物产量、土壤肥力及重金属的影响[J].江苏农业学报,2021,(05):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
ZHANG Xia,LI Jian,PAN Xiao-qing,et al.Effects of different proportions of spent litters on crop yield, soil fertility and heavy metals in rice-wheat rotation[J].,2021,(04):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
[4]陶玥玥,周新伟,金梅娟,等.湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征[J].江苏农业学报,2022,38(01):94.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]
TAO Yue-yue,ZHOU Xin-wei,JIN Mei-juan,et al.Decomposition of returned wheat straw and change characteristics of soil active carbon in water-saturated rice production system[J].,2022,38(04):94.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]
[5]汤佳玮,丁婕婕,刘晓淑,等.巢湖流域氮肥减施下2种控释肥料对水稻产量、氮肥利用率及环境效益的影响[J].江苏农业学报,2024,(10):1826.[doi:doi:10.3969/j.issn.1000-4440.2024.10.007]
TANG Jiawei,DING Jiejie,LIU Xiaoshu,et al.Effects of two controlled-release fertilizers on rice yield, nitrogen use efficiency and environmental benefits under nitrogen fertilizer reduction in Chaohu Lake Basin[J].,2024,(04):1826.[doi:doi:10.3969/j.issn.1000-4440.2024.10.007]