参考文献/References:
[1]郭艳春. 干旱灾害风险评估及管理对策探析[J]. 地下水, 2019, 44(4): 148-149.
[2]纪瑞鹏,于文颖,冯锐,等. 作物对干旱胁迫的响应过程与早期识别技术研究进展[J]. 灾害学, 2019, 34(2): 153-160.
[3]胡鹏飞. 基于多源遥感数据的农业旱情监测方法比较研究[D]. 兰州:西北师范大学, 2019.
[4]方子松,龙华,金隆英,等. 干旱胁迫对云南薏苡新品种形态和生理指标的影响[J]. 农业科学与技术(英文版), 2019, 20(1):22-29.
[5]庄克章,吴荣华,张春艳,等. 苗期干旱及复水对玉米生长和生理特性的影响[J]. 山东农业科学, 2020, 52(350): 61-66.
[6]崔丽娜,董树亭. 不同氮肥处理下高温胁迫对夏玉米产量及叶片超微构造的影响[J]. 玉米科学, 2020, 28(137): 96-101.
[7]邵宇航,石祖梁,张姗,等. 高温胁迫下镁对小麦旗叶光合特性及产量的影响[J]. 麦类作物学报, 2018, 38(7): 802-808.
[8]费立伟. 晚播对冬小麦灌浆后期高温胁迫下光合能力和产量的影响[D]. 泰安:山东农业大学, 2020.
[9]郝召君,周春华,刘定,等. 高温胁迫对芍药光合作用、叶绿素荧光特性及超微结构的影响[J]. 分子植物育种, 2017,15(6):2359-2367.
[10]关琳琳. 基于叶绿素荧光的植被总初级生产力估算[D]. 北京:中国科学院大学, 2017.
[11]刘雷震,武建军,周洪奎,等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(9): 2780-2787.
[12]程占慧,刘良云. 基于叶绿素荧光发射光谱的光能利用率探测[J]. 农业工程学报, 2010, 26(S2): 74-80.
[13]詹春晖,章钊颖,张永光. 日光诱导叶绿素荧光辐射传输模型研究进展[J]. 遥感学报, 2020, 24(8): 945-957.
[14]DOBROWSKI S Z, PUSHNIK J C, ZARCO-TEJADA P J, et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment, 2005, 97: 403-414.
[15]ALEXANDER A, MALENOVSKY Z, OLEJNICKOVA J, et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress[J]. Remote Sensing of Environment, 2015, 168: 420-436.
[16]DAUMARD F, CHAMPAGNE S, FOURNIER A, et al. A field platform for continuous measurement of canopy fluorescence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48: 3358-3368.
[17]LIU L, YANG X, ZHOU H, et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment, 2018, 625: 1208-1217.
[18]LEE J E, FRANKENBERG C, VANDERTOL C, et al. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence[J]. Proceedings of the Royal Society B(Biological Sciences), 2013, 280: 20130171.
[19]WANG X, QIU B, LI W, et al. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence[J]. Science of the Total Environment, 2019, 693: 133627.
[20]SONG L, LUIS G, GUAN K, et al. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Biology, 2018, 24(9): 4023-4037.
[21]王江山. 生态与农业气象[M]. 北京:气象出版社, 2005.
[22]MOYA I, CAMENEN L, EVAIN S, et al. A new instrument for passive remote sensing[J]. Remote Sensing of Environment, 2004, 91: 186-197.
[23]刘良云,张永江,王纪华,等. 利用夫琅和费暗线探测自然光条件下的植被光合作用荧光研究[J]. 遥感学报, 2006, 10(1): 130-137.
[24]DAMM A, ERLER A, HILLEN W, et al. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment, 2011, 115: 1882-1892.
[25]MERONI M, BUSETTO L, COLOMBO R, et al. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment, 2010, 114: 363-374.
[26]问静怡. 基于日光诱导荧光的水稻铜胁迫遥感监测机理研究[D]. 杭州:杭州师范大学, 2019.
[27]王冉,刘志刚,杨沛琦. 植物日光诱导叶绿素荧光的遥感原理及研究进展[J]. 地球科学进展, 2012, 27(11): 1221-1228.
[28]李萌. 夏玉米理化参数对连续水分胁迫的响应特征及遥感监测[D].南京:南京信息工程大学, 2018.
[29]陈秀青,杨琦,韩景晔, 等. 基于叶冠尺度高光谱的冬小麦叶片含水量估算[J]. 光谱学与光谱分析, 2020, 40(3): 233-239.
[30]王秋玲. 夏玉米生理生态与生长特性对干旱过程的响应研究[D].北京:中国气象科学研究院, 2015.
[31]刘红芳,邸仕忠,姚启伦. 热带和温带玉米对干旱的形态生理应答[J]. 安徽大学学报(自然科学版), 2020, 44(3): 92-99.
[32]宋晋辉,瓮巧云,吕爱枝,等. 拔节期干旱胁迫对青贮玉米生育与品质的影响[J]. 中国农业科技导报, 2020, 22(154): 167-173.
[33]宋贺,蒋延玲,许振柱,等. 玉米光合生理参数对全生育期干旱与拔节后干旱过程的响应[J]. 生态学报, 2019, 39(7): 2405-2415.
[34]印玉明,王永清,马春晨,等. 利用日光诱导叶绿素荧光监测水稻叶片叶绿素含量[J]. 农业工程学报, 2021, 37(12): 169-180.
[35]SUN Y, FU R, DICKINSON R, et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events[J]. Journal of Geophysical Research(Biogeosciences), 2016, 120: 2427-2440.
[36]CHEN X, MO X, ZHANG Y, et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators, 2019, 104: 347-356.
相似文献/References:
[1]田宏伟,邢开成,黄进,等.近30年河南省夏玉米的气象年景波动对大气环流的响应[J].江苏农业学报,2020,(06):1437.[doi:doi:10.3969/j.issn.1000-4440.2020.06.012]
TIAN Hong-wei,XING Kai-cheng,HUANG Jin,et al.Responses of fluctuations of annual meteorological harvest for summer maize to atmospheric circulation in Henan province during recent 30 years[J].,2020,(03):1437.[doi:doi:10.3969/j.issn.1000-4440.2020.06.012]
[2]尚赏,郭书亚,张艳,等.不同收获期对豫东地区夏玉米机械粒收质量的影响[J].江苏农业学报,2021,(04):867.[doi:doi:10.3969/j.issn.1000-4440.2021.04.008]
SHANG Shang,GUO Shu-ya,ZHANG Yan,et al.Effects of different harvesting date on mechanical grain-harvesting quality of summer maize in Eastern Henan[J].,2021,(03):867.[doi:doi:10.3969/j.issn.1000-4440.2021.04.008]
[3]傅鹏霄,王珏,李广浩,等.不同栽培模式对江苏省夏玉米产量和氮素利用的影响[J].江苏农业学报,2021,(05):1151.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
FU Peng-xiao,WANG Jue,LI Guang-hao,et al.Effects of different cultivation patterns on the yield and nitrogen utilization of summer maize in Jiangsu province[J].,2021,(03):1151.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
[4]郑智康,常庆瑞,符欣彤,等.基于变换光谱与光谱指数的夏玉米叶片含水率高光谱估算[J].江苏农业学报,2023,(09):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]
ZHENG Zhi-kang,CHANG Qing-rui,FU Xin-tong,et al.Hyperspectral estimation of leaf water content of summer maize based on transformed spectrum and spectral index[J].,2023,(03):1883.[doi:doi:10.3969/j.issn.1000-4440.2023.09.010]