参考文献/References:
[1]崔志英. 水稻插秧机研究现状及发展趋势[J].农业工程,2015,5(4):41-42.
[2]张树阁,苏春华,周磊,等. 促进水稻种植机械化水平提高[J].农机科技推广,2017(10):19-20.
[3]韩峰. 水稻机械化插秧技术分析与种植机械发展趋势[J].农业开发与装备, 2019(5):208-212.
[4]李春元. 对水稻插秧机主要项目测定与数据处理的探讨[J].农机论坛,2016(6):15-16.
[5]中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会.中华人民共和国国家标准水稻插秧机试验方法:GB/T 6243-2017[S].北京:中国标准出版社.
[6]廖娟,陈民慧,汪鹞,等. 基于双重 Gamma 校正的秧苗图像增强算法[J].江苏农业学报,2020,36(6): 1411-1418.
[7]陈旭君,王承祥,朱德泉,等. 基于YOLO卷积神经网络的水稻秧苗行线检测[J].江苏农业学报,2020,36(4):930-935.
[8]陈信新. 基于机器视觉算法的水稻秧苗状态识别[J].计算机应用研究,2019,36(5):2-5.
[9]WOEBBECKE D M, MEYE G E, BARGEN K V, et al. Shape features of identifying yong weeds using image analysis[J].Transactions on American Society of Agricultural Engineering,1995,38(1):271-281.
[10]MEYE G E, HINDMAN T W, LAKSMI K. Machine vision detection parameters for plants species identification[C]. Bellingham, WA:SPIE,1999.
[11]NETO J C, MAYER G E. Crop species identification using machine vison of compute extracted individual leaves[J]. Proc Spie,2005,5996(11):64-74.
[12]KATAOKA T, KANEKO T, OKAMOTO H, et al. Crop growth estimation system using machine vision[C]. Piscataway,NJ:IEEE,2003.
[13]龚立雄. 基于ComVI和双阈值OTSU算法的农作物图像识别[J]. 排灌机械工程学报,2014,32(4):364-368.
[14]ELAZIZ M A, OLIVAD, EWEES A A,et al. Multi-level thresholding based grey scale image segmentation using multi-objective multiverse optimizer[J]. Expert Systems with Applications,2019,125:1-37.
[15]袁加红,朱德泉,孙丙宇,等.基于机器视觉的水稻秧苗图像分割[J]. 浙江农业学报,2016,28(6):1069-1075.
[16]周俊,王明军,邵乔林. 农田图像绿色植物自适应分割方法[J]. 农业工程学报, 2013,29(18):163-169.
[17]白元明,孔令成,张志华,等.基于改进 OTSU 算法的快速作物图像分割[J].江苏农业科学,2019,47(24):231-236.
[18]耿楠,于伟,宁纪锋.基于水平集和先验信息的农业图像分割方法[J].农业机械学报,2011,42(9):167-172.
[19]张志斌,罗锡文,臧英,等. 基于颜色特征的绿色作物图像分割算法[J]. 农业工程学报, 2011, 27(7):183-189.
[20]迟德霞,张伟,王洋. 基于EXG因子的水稻秧苗图像分割[J]. 安徽农业科学, 2012, 40(36):17902-17903.
[21]王雪,尹来武,郭鑫鑫. 室外多变光照条件下农田绿色作物的图像分割方法[J]. 吉林大学学报(理学版),2018,56(5):1213-1218.
[22]OTSU N .A Threshold selection method from gray-level histograms[J]. IEEE Transaction System,Man and Cybenetics,1979, 9(1):62-66.
[23]中华人民共和国农业农村部:农业机械推广鉴定大纲-水稻插秧机:DG/T 008-2019[S]. 北京:中国农业出版社.
相似文献/References:
[1]胡维炜,张武,刘连忠,等.利用图像处理技术计算大豆叶片相对病斑面积[J].江苏农业学报,2016,(04):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
HU Wei-wei,ZHANG Wu,LIU Lian-zhong,et al.Measurement of relative lesion area on soybean leaf using image processing technology[J].,2016,(02):774.[doi:10.3969/j.issn.100-4440.2016.04.010]
[2]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(02):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[3]王振,张善文,王献锋.基于改进全卷积神经网络的黄瓜叶部病斑分割方法[J].江苏农业学报,2019,(05):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
WANG Zhen,ZHANG Shan-wen,WANG Xian-feng.Method for segmentation of cucumber leaf lesions based on improved full convolution neural network[J].,2019,(02):1054.[doi:doi:10.3969/j.issn.1000-4440.2019.05.008]
[4]雷旺雄,卢军.葡萄采摘机器人采摘点的视觉定位[J].江苏农业学报,2020,(04):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
LEI Wang-xiong,LU Jun.Visual positioning method for picking point of grape picking robot[J].,2020,(02):1015.[doi:doi:10.3969/j.issn.1000-4440.2020.04.029]
[5]刘连忠,李孟杰,宁井铭.基于改进SLIC的光照干扰下茶树冠层图像分割[J].江苏农业学报,2020,(04):1022.[doi:doi:10.3969/j.issn.1000-4440.2020.04.030]
LIU Lian-zhong,LI Meng-jie,NING Jing-ming.Segmentation of tea plant canopy image under light interference based on improved SLIC[J].,2020,(02):1022.[doi:doi:10.3969/j.issn.1000-4440.2020.04.030]
[6]魏超宇,韩文,庞程,等.基于多尺度特征融合和密集连接网络的疏果期黄花梨植株图像分割[J].江苏农业学报,2021,(04):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
WEI Chao-yu,HAN Wen,PANG Cheng,et al.Image segmentation of Huanghua pear plants at fruit-thinning stage based on multi-scale feature fusion and dense connection network[J].,2021,(02):990.[doi:doi:10.3969/j.issn.1000-4440.2021.04.023]
[7]王万亮,江高飞,严江伟,等.基于卷积评价及对抗网络的花粉、孢子图像增广算法[J].江苏农业学报,2021,(05):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
WANG Wan-liang,JIANG Gao-fei,YAN Jiang-wei,et al.Augmented algorithm for pollen and spore images based on convolution evaluation and pix2pix network[J].,2021,(02):1190.[doi:doi:10.3969/j.issn.1000-4440.2021.05.014]
[8]陈科尹,吴崇友,关卓怀,等.基于统计直方图k-means聚类的水稻冠层图像分割[J].江苏农业学报,2021,(06):1425.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
CHEN Ke-yin,WU Chong-you,GUAN Zhuo-huai,et al.Rice canopy image segmentation based on statistical histogram k-means clustering[J].,2021,(02):1425.[doi:doi:10.3969/j.issn.1000-4440.2021.05.009]
[9]许鑫,耿庆,郑凯,等.基于纹理特征与深度学习的小麦图像中的穗粒分割与计数[J].江苏农业学报,2024,(04):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]
XU Xin,GENG Qing,ZHENG Kai,et al.Segmentation and counting of wheat spikes and grains based on texture features and deep learning[J].,2024,(02):661.[doi:doi:10.3969/j.issn.1000-4440.2024.04.010]