[1]史高玲,周东美,余向阳,等.水稻和小麦累积镉和砷的机制与阻控对策[J].江苏农业学报,2021,(05):1333-1343.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
 SHI Gao-ling,ZHOU Dong-mei,YU Xiang-yang,et al.Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J].,2021,(05):1333-1343.[doi:doi:10.3969/j.issn.1000-4440.2021.05.032]
点击复制

水稻和小麦累积镉和砷的机制与阻控对策()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年05期
页码:
1333-1343
栏目:
综述
出版日期:
2021-10-30

文章信息/Info

Title:
Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies
作者:
史高玲1周东美2余向阳1娄来清3童非1樊广萍1刘丽珠1高岩1
(1.江苏省农业科学院农业资源与环境研究所,江苏南京210014;2.南京大学环境学院,江苏南京210023;3.南京农业大学生命科学学院,江苏南京210095)
Author(s):
SHI Gao-ling1ZHOU Dong-mei2YU Xiang-yang1LOU Lai-qing3TONG Fei1FAN Guang-ping1LIU Li-zhu1GAO Yan1
(1.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2.School of the Environment, Nanjing University, Nanjing 210023, China;3.College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
水稻小麦吸收积累
Keywords:
cadmiumarsenicricewheatabsorbaccumulation
分类号:
X53
DOI:
doi:10.3969/j.issn.1000-4440.2021.05.032
文献标志码:
A
摘要:
农作物可食用部位累积的镉和砷是人体摄入镉和砷的主要来源之一。研究农作物对镉和砷的累积机制,在此基础上研发阻控农作物对镉和砷累积的方法和技术,是保障被污染农田的安全利用和农产品质量安全的最有效途径,对解决农田镉、砷污染难题具有重大意义。鉴于水稻和小麦是中国最主要的粮食作物,本文就水稻和小麦对镉和砷的吸收、积累和转运机制进行了综述,比较和分析了镉、砷在土壤-作物系统中迁移、转化过程中的异同点及其相应的阻控对策,并探讨了该领域未来的研究方向。
Abstract:
Accumulation of cadmium (Cd) and arsenic (As) in the edible parts of crops is a major source of As and Cd intake by humans. Studying the mechanisms of Cd and As accumulation and developing methods and technology for controlling Cd and As uptake and accumulation in food crops is the most effective way for guaranteeing safe utilization of the contaminated farmland and quality safety of agricultural products, and is of great significance to solve the problems of Cd and As contamination in the farmland. Given that rice and wheat are the most important food crops in our country, in this review, we summarized the mechanisms responsible for Cd and As absorption, accumulation and transportation in rice and wheat plants. Similarities and differences between Cd and As migration and transformation process in soil-crops system and the strategies to mitigate Cd and As accumulation in rice and wheat grains were discussed. The future researches in this field were also prospected.

参考文献/References:

[1]环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. (2014-04-17)
[2020-08-12]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[2]ZHAO F J, WANG P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
[3]ATSDR. Detailed data table for the 2019 priority list of hazardous substances, the subject of toxicological profiles[R/OL]. (2020-1-17)
[2020-08-12]. https://www.atsdr.cdc.gov/SPL/.
[4]MEHARG A A, NORTON G, DEACON C, et al. Variation in rice cadmium related to human exposure[J]. Environmental Science and Technology, 2013, 47(11): 5613-5618.
[5]SEYFFERTH A L, MCCURDY S, SCHAEFER M V, et al. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia[J]. Environmental Science and Technology, 2014, 48(9): 4699-4706.
[6]CHEN H P, TANG Z, WANG P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490.
[7]PHUC H D, KIDO T, OANH N T P, et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology, 2017, 37(9): 1046-1052.
[8]KESSON A, BARREGARD L, BERGDAHL I A, et al. Non-renal effects and the risk assessment of environmental cadmium exposure[J]. Environmental Health Perspectives, 2014, 122(5): 431-438.
[9]SMITH A H, STEINMAUS C M. Health effects of arsenic and chromium in drinking water: recent human findings[J]. Annual Review of Public Health, 2009, 30: 107-122.
[10]汪鹏,王静,陈宏坪,等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37 (7): 1409-1417.
[11]TANG Z, ZHAO F J . The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants[J]. Critical Reviews in Environmental Science and Technology, 2020(3):1-36.
[12]SUI F Q, CHANG J D, TANG Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil, 2018, 433(1/2): 377-389.
[13]MU T T, WU T Z, ZHOU T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the ajor rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381.
[14]LI X, ZHOU D M. A meta-analysis on phenotypic variation in cadmium accumulation of rice and wheat: implications for food cadmium risk control[J]. Pedosphere, 2019, 29(5): 545-553.
[15]YANG J L, CANG L, WANG X, et al. Field survey study on the difference in Cd accumulation capacity of rice and wheat in rice-wheat rotation area[J]. Journal of Soils and Sediments, 2020, 20(4): 2082-2092.
[16]陆美斌,陈志军,李为喜,等. 中国两大优势产区小麦重金属镉含量调查与膳食暴露评估[J]. 中国农业科学, 2015, 48(19): 3866-3876.
[17]朱桂芬,张春燕,王建玲,等. 新乡市寺庄顶污灌区土壤及小麦重金属污染特征的研究[J]. 农业环境科学学报, 2009, 28(2): 263-268.
[18]XING W Q, ZHANG H Y, SCHECKEL et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China[J]. Environmental Monitoring and Assessment, 2016, 188(1): 23.
[19]ZHAO D, LIU R Y, XIANG P, et al. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers[J]. Environmental Science and Technology, 2017, 51(12): 6756-6764.
[20]WILLIAMS P N, VILLADA A, DEACON C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science and Technology, 2007, 41(19): 6854-6859.
[21]ZHU Y G, SUN G X, LEI M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science and Technology, 2008, 42(13): 5008-5013.
[22]LIAO X Y, CHEN T B, XIE H, et al. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China[J]. Environment International, 2005, 31(6): 791-798.
[23]BATISTA B L, SOUZA J M O, SOUZA S S D, et al. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption[J]. Journal of Hazardous Materials, 2011, 19(1): 342-348.
[24]MEHARG A A, LOMBI E, WILLIAMS K G, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environmental Science and Technology, 2008, 42(4): 1051-1057.
[25]SHI G L, LOU L Q, ZHANG S, et al. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China[J]. Environmental Science and Pollution Research, 2013, 20(12): 8435-8445.
[26]DEL RAZO L M, QUINTANILLA-VEGA B, BRAMBILA-COLOMBRES E, et al. Stress proteins induced by arsenic[J]. Toxicology and Applied Pharmacology, 2001, 177(2): 132-148.
[27]HIRANO S, KOBAYASHI Y, CUI X, et al. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds[J]. Toxicology and Applied Pharmacology, 2004,198(3): 458-467.
[28]SUMAN S, SHARMA P K, SIDDIQUE A B, et al. Wheat is an emerging exposure route for arsenic in Bihar, India[J]. Science of the Total Environment, 2020, 703:134774.
[29]HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science and Technology, 2016, 50(8): 4178-4185.
[30]DE LIVERA J, MCLAUGHLIN M J, HETTIARACHCHI G M, et al. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497.
[31]WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508.
[32]TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science and Technology, 2004, 38(4):1038-1044.
[33]YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 2011, 83(7): 925-932.
[34]BOLAN N S, ADRIANO D C, MANI P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. Ⅱ. Effect of lime addition[J]. Plant and Soil, 2003, 251(2): 187-198.
[35]MARIN A R, MASSCHELEYN P H, PATRICK W H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J]. Plant and Soil, 1993, 152(2): 245-253.
[36]MANNING B A, GOLDBERG S. Arsenic (Ⅲ) and arsenic (V) adsorption on three California soils[J]. Soil Science, 1997, 162(12): 886-895.
[37]余跃,王济,张浩,等. 土壤-植物系统中砷的研究进展[J]. 安徽农业科学, 2009, 37(7): 3210-3215.
[38]陈静,王学军,朱立军. pH对砷在贵州红壤中的吸附的影响[J]. 土壤, 2004, 36(2): 211-214.
[39]DIXIT S, HERING J G. Comparison of arsenic (V) and arsenic (Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science and Technology, 2003, 37(18): 4182-4189.
[40]CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707.
[41]DUAN G, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
[42]ZHU Y G, GENG C N, TONG Y P, et al. Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines[J]. Annals of Botany, 2006, 98(3): 631-636.
[43]WU Z C, REN, H Y, MCGRATH S P, et al. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J]. Plant Physiology, 2011, 157(1): 498-508.
[44]KAMIYA T, ISLAM R, DUAN G, et al. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Science and Plant Nutrition, 2013, 59(4): 580-590.
[45]CAO Y, SUN D, AI H, et al. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains[J]. Environmental Science and Technology, 2017, 51(21): 12131-12138.
[46]SHI G L, MA H X, CHEN Y L, et al. Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): a mechanism for arsenate tolerance in wheat plants[J]. Chemosphere, 2019, 214: 94-102.
[47]ZHAO F J, MEHARG A A, MCGATH S P. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61: 535-559.
[48]MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935.
[49]MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
[50]MA J F, YAMAJI N, MITANI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-213.
[51]ZHAO F J, AGO Y, MITANI N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytologist, 2010, 186(2): 392-399.
[52]LOMAX C, LIU W J, WU L Y, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
[53]RAAB A, WILLIAMS P N, MEHARG A A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environmental Chemistry, 2007, 4(3): 197-203.
[54]ZHENG M Z, CAI C, HU Y, et al. Spatial distribution of arsenic and temporal variation of its concentration in rice[J]. New Phytologist, 2011, 189(1): 200-209.
[55]LI R Y, AGO Y, LIU W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiology, 2009, 150(4): 2071-2080.
[56]NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
[57]LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630.
[58]ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(1): 989-993.
[59]SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2155-5167.
[60]WU J W, MOCK H P, GIEHL R F H, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants[J]. Journal of Hazardous Materials, 2019, 364: 581-590.
[61]YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10(1): 2562.
[62]TANG L, QU M, ZHU Y, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake[J]. Plant Physiology, 2020, 183(3): 1235-1249.
[63]LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019,19(1): 283.
[64]CHAO D Y, CHEN Y, CHEN J G, et al. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants[J]. PLoS Biology, 2014, 12(12): e1002009.
[65]SHI G L, ZHU S, MENG J R, et al. Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings[J]. Journal of Hazardous Materials, 2015, 289: 190-196.
[66]SHI S L, WANG T, CHEN Z R, et al. OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiology, 2016, 172(3): 1708-1719.
[67]SONG W Y, YAMAKI T, YAMAJI N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J]. Proceedings of the National Academy of Sciences, 2014, 111(44): 15699-15704.
[68]LIU W, WOOD B A, RAAB A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis[J]. Plant Physiology, 2010, 152(4): 2211-2221.
[69]PARK J, SONG W Y, KO D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 2012, 69(2): 278-288.
[70]SUN S K, CHEN Y, CHE J, et al. Decreasing arsenic accumulation in rice by overexpressing OsNIP 1; 1 and OsNIP 3; 3 through disrupting arsenite radial transport in roots[J]. New Phytologist, 2018, 219(2): 641-653.
[71]TANG Z, CHEN Y, MILLER A J, et al. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice[J]. Plant and Cell Physiology, 2019, 60(7): 1525-1535.
[72]UENO D, YAMAJI N, KONO I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505.
[73]MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199.
[74]ZHANG L, GAO C, CHEN C, et al. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environmental Science and Technology, 2020, 54(16): 10100-10108.
[75]TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell and Environment, 2012, 35(11): 1948-1957.
[76]TAN L, ZHU Y, FAN T, et al. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118.
[77]LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1): 645.
[78]FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806.
[79]URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 2011, 108(52): 20959-20964.
[80]HUANG G X, DING C F, GUO F Y, et al. The role of node restriction on cadmium accumulation in the brown rice of 12 Chinese rice (Oryza sativa L.) cultivars[J]. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10157-10164.
[81]YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939.
[82]SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224.
[83]SASAKI A, YAMAJI N, MITANI-UNEO N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374-384.
[84]TIAN S, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120853.
[85]DUAN G L, HU Y, SCHNEIDER S, et al. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds[J]. Nature Plants, 2016, 2: 15202.
[86]LIU N, HUANG X M, SUN L M, et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241: 125065.
[87]SHI G L, ZHU S, BAI S N, et al. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other[J]. Journal of Hazardous Materials, 2015, 299: 94-102.
[88]WEN E G, YANG X, CHEN H B, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials, 2021, 407: 124344.
[89]ZHENG R L, CAI C, LIANG J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings[J]. Chemosphere, 2012, 89(10): 856-862.
[90]BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils[J]. Journal of Hazardous Materials, 2013, 261: 725-732.
[91]ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106.
[92]WANG N, XUE X M, JUHASZ A L, et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution, 2017, 220: 514-522.
[93]CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake[J]. Environmental Pollution, 2019, 253: 959-965.
[94]YANG Y, LI Y L, CHEN W P, et al. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling[J]. Environmental Pollution, 2020, 267: 115613.
[95]HUSSAIN B, LI J, MA Y, et al. Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment[J]. PLoS One, 2020, 15(12): e0243174.
[96]LI R Y, STROUD J L, MA J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science and Technology, 2009, 43(10): 3778-3783.
[97]ZHENG H, WANG M, CHEN S B, et al. Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe + pH conditions[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109641.
[98]SHI G L, LU H Y, LIU H, et al. Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant[J]. Science of the Total Environment, 2020, 713: 136665.
[99]ZHANG S J, GENG L P, FAN L M, et al. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil[J]. Science of the Total Environment, 2020,704:135239.
[100]WANG H, XU C, LUO Z C, et al. Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions[J]. Environmental Science and Pollution Research, 2018, 25(29): 29287-29294.
[101]HUANG H L, LI M, RIZWAN M, et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials, 2021, 401: 123393.
[102]ZHOU J, ZHANG C, DU B Y, et al. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties[J]. Journal of Hazardous Materials, 2020, 402: 123546.
[103]TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438
[104]龙起樟, 黄永兰, 唐秀英, 等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420.
[105]DENG L, LI Z, WANG J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies[J]. International Journal of Phytoremediation, 2016, 18(2):134-140.
[106]朱凰榕, 周良华, 阳 峰, 等. 两种景天修复Cd/Zn污染土壤效果的比较[J]. 生态环境学报, 2019, 28(2): 403-410.
[107]FAYIGA A O, SAHA U K. Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils[J]. Geoderma, 2016, 284: 132-143.
[108]YE W L, KHAN M A, MCGRATH S P, et al. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice[J]. Environmental Pollution, 2011, 159(12): 3739-3743.
[109]YANG J, GUO Y, YAN Y X, et al. Phytoaccumulation of As by Pteris vittata supplied with phosphorus fertilizers under different soil moisture regimes-A field case[J]. Ecological Engineering, 2019, 138: 274-280.

相似文献/References:

[1]凌云,万夕和,张朝晖,等.微波加湿法分段消解-原子荧光法测定贝藻产品中总砷含量[J].江苏农业学报,2017,(03):695.[doi:doi:10.3969/j.issn.1000-4440.2017.03.031]
 LING Yun,WAN Xi-he,ZHANG Zhao-hui,et al.Determination of total arsenic content in shellfish and algae products by microwave and wet digestion-hydride generation atomic fluorescence spectrometry[J].,2017,(05):695.[doi:doi:10.3969/j.issn.1000-4440.2017.03.031]
[2]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(05):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[3]朱守晶,史文娟,揭雨成.不同苎麻品种对土壤中镉、铅富集的差异[J].江苏农业学报,2018,(02):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
 ZHU Shou-jing,SHI Wen-juan,JIE Yu-cheng.Variety difference in cadmium and lead accumulation by ramie (Boehmeria nivea) from soil[J].,2018,(05):320.[doi:doi:10.3969/j.issn.1000-4440.2018.02.014]
[4]孟莉蓉,俞浩丹,杨婷婷,等.2种生物炭对Pb、Cd污染土壤的修复效果[J].江苏农业学报,2018,(04):835.[doi:doi:10.3969/j.issn.1000-4440.2018.04.017]
 MENG Li-rong,YU Hao-dan,YANG Ting-ting,et al.Immobilization of two biochars to Pb, Cd in contaminated soils[J].,2018,(05):835.[doi:doi:10.3969/j.issn.1000-4440.2018.04.017]
[5]练旺民,徐薇,孟卓玲,等.表油菜素内酯在缓解水稻砷毒害中的作用[J].江苏农业学报,2018,(06):1267.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
 LIAN Wang-min,XU Wei,MENG Zhuo-ling,et al.Effects of supplementation of epibrassinolide on alleviation of arsenic stress in rice[J].,2018,(05):1267.[doi:doi:10.3969/j.issn.1000-4440.2018.06.010]
[6]张海涛,郭西亚,张杰,等.铜绿微囊藻对锌、镉胁迫的生理响应[J].江苏农业学报,2019,(01):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
 ZHANG Hai-tao,GUO Xi-ya,ZHANG Jie,et al.Physiological response of Microcystis aeruginosa to Zn2+ and Cd2+ stresses[J].,2019,(05):33.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
[7]任伟,赵蓉,刘云根,等.湿地生境下土壤砷形态转化与微环境因子的关系[J].江苏农业学报,2019,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2019.02.012]
 REN Wei,ZHAO Rong,LIU Yun-gen,et al.The relationship between soil arsenic speciation transformation and microenvironment factors in wetland habitats[J].,2019,(05):321.[doi:doi:10.3969/j.issn.1000-4440.2019.02.012]
[8]倪幸,黄其颖,叶正钱.竹炭施用对土壤镉形态转化和小麦镉积累的影响[J].江苏农业学报,2019,(04):818.[doi:doi:10.3969/j.issn.1000-4440.2019.04.010]
 NI Xing,HUANG Qi ying,YE Zheng qian.Effects of bamboo biochar application on cadmium morphological transformation in soil and cadmium accumulation in wheat[J].,2019,(05):818.[doi:doi:10.3969/j.issn.1000-4440.2019.04.010]
[9]彭云霄,彭炜东,余江,等.大田与盆栽条件下重金属镉赋存形态差异[J].江苏农业学报,2019,(06):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
 PENG Yun-xiao,PENG Wei-dong,YU Jiang,et al.Differences of heavy metal cadmium fractions in field-pot planting[J].,2019,(05):1368.[doi:doi:10.3969/j.issn.1000-4440.2019.06.014]
[10]高欣,邓芸,季蒙蒙,等.氨基酸盐对镉污染土壤的淋洗效果[J].江苏农业学报,2020,(02):366.[doi:doi:10.3969/j.issn.1000-4440.2020.02.016]
 GAO Xin,DENG Yun,JI Meng-meng,et al.Leaching effect of amino acid salts on cadmium contaminated soil[J].,2020,(05):366.[doi:doi:10.3969/j.issn.1000-4440.2020.02.016]

备注/Memo

备注/Memo:
收稿日期:2021-02-25基金项目:江苏省农业科技自主创新基金项目[CX(20)1010];江苏省科学技术协会青年科技人才托举工程项目(2019);国家自然科学基金项目(41601541)作者简介:史高玲(1988-),男,安徽枞阳人,博士,副研究员,主要从事重金属污染农田安全利用与污染修复研究。(E-mail)shigaoling@jaas.ac.cn通讯作者:高岩,(E-mail)ygao@jaas.ac.cn
更新日期/Last Update: 2021-11-09