参考文献/References:
[1]环境保护部, 国土资源部. 全国土壤污染状况调查公报[R/OL]. (2014-04-17)
[2020-08-12]. http://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[2]ZHAO F J, WANG P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.
[3]ATSDR. Detailed data table for the 2019 priority list of hazardous substances, the subject of toxicological profiles[R/OL]. (2020-1-17)
[2020-08-12]. https://www.atsdr.cdc.gov/SPL/.
[4]MEHARG A A, NORTON G, DEACON C, et al. Variation in rice cadmium related to human exposure[J]. Environmental Science and Technology, 2013, 47(11): 5613-5618.
[5]SEYFFERTH A L, MCCURDY S, SCHAEFER M V, et al. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia[J]. Environmental Science and Technology, 2014, 48(9): 4699-4706.
[6]CHEN H P, TANG Z, WANG P, et al. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490.
[7]PHUC H D, KIDO T, OANH N T P, et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology, 2017, 37(9): 1046-1052.
[8]KESSON A, BARREGARD L, BERGDAHL I A, et al. Non-renal effects and the risk assessment of environmental cadmium exposure[J]. Environmental Health Perspectives, 2014, 122(5): 431-438.
[9]SMITH A H, STEINMAUS C M. Health effects of arsenic and chromium in drinking water: recent human findings[J]. Annual Review of Public Health, 2009, 30: 107-122.
[10]汪鹏,王静,陈宏坪,等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37 (7): 1409-1417.
[11]TANG Z, ZHAO F J . The roles of membrane transporters in arsenic uptake, translocation and detoxification in plants[J]. Critical Reviews in Environmental Science and Technology, 2020(3):1-36.
[12]SUI F Q, CHANG J D, TANG Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant and Soil, 2018, 433(1/2): 377-389.
[13]MU T T, WU T Z, ZHOU T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the ajor rice producing regions of China[J]. Science of the Total Environment, 2019, 677: 373-381.
[14]LI X, ZHOU D M. A meta-analysis on phenotypic variation in cadmium accumulation of rice and wheat: implications for food cadmium risk control[J]. Pedosphere, 2019, 29(5): 545-553.
[15]YANG J L, CANG L, WANG X, et al. Field survey study on the difference in Cd accumulation capacity of rice and wheat in rice-wheat rotation area[J]. Journal of Soils and Sediments, 2020, 20(4): 2082-2092.
[16]陆美斌,陈志军,李为喜,等. 中国两大优势产区小麦重金属镉含量调查与膳食暴露评估[J]. 中国农业科学, 2015, 48(19): 3866-3876.
[17]朱桂芬,张春燕,王建玲,等. 新乡市寺庄顶污灌区土壤及小麦重金属污染特征的研究[J]. 农业环境科学学报, 2009, 28(2): 263-268.
[18]XING W Q, ZHANG H Y, SCHECKEL et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan province, China[J]. Environmental Monitoring and Assessment, 2016, 188(1): 23.
[19]ZHAO D, LIU R Y, XIANG P, et al. Applying cadmium relative bioavailability to assess dietary intake from rice to predict cadmium urinary excretion in nonsmokers[J]. Environmental Science and Technology, 2017, 51(12): 6756-6764.
[20]WILLIAMS P N, VILLADA A, DEACON C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environmental Science and Technology, 2007, 41(19): 6854-6859.
[21]ZHU Y G, SUN G X, LEI M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science and Technology, 2008, 42(13): 5008-5013.
[22]LIAO X Y, CHEN T B, XIE H, et al. Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China[J]. Environment International, 2005, 31(6): 791-798.
[23]BATISTA B L, SOUZA J M O, SOUZA S S D, et al. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption[J]. Journal of Hazardous Materials, 2011, 19(1): 342-348.
[24]MEHARG A A, LOMBI E, WILLIAMS K G, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environmental Science and Technology, 2008, 42(4): 1051-1057.
[25]SHI G L, LOU L Q, ZHANG S, et al. Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China[J]. Environmental Science and Pollution Research, 2013, 20(12): 8435-8445.
[26]DEL RAZO L M, QUINTANILLA-VEGA B, BRAMBILA-COLOMBRES E, et al. Stress proteins induced by arsenic[J]. Toxicology and Applied Pharmacology, 2001, 177(2): 132-148.
[27]HIRANO S, KOBAYASHI Y, CUI X, et al. The accumulation and toxicity of methylated arsenicals in endothelial cells: important roles of thiol compounds[J]. Toxicology and Applied Pharmacology, 2004,198(3): 458-467.
[28]SUMAN S, SHARMA P K, SIDDIQUE A B, et al. Wheat is an emerging exposure route for arsenic in Bihar, India[J]. Science of the Total Environment, 2020, 703:134774.
[29]HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science and Technology, 2016, 50(8): 4178-4185.
[30]DE LIVERA J, MCLAUGHLIN M J, HETTIARACHCHI G M, et al. Cadmium solubility in paddy soils: Effects of soil oxidation, metal sulfides and competitive ions[J]. Science of the Total Environment, 2011, 409(8): 1489-1497.
[31]WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508.
[32]TAKAHASHI Y, MINAMIKAWA R, HATTORI K H, et al. Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods[J]. Environmental Science and Technology, 2004, 38(4):1038-1044.
[33]YAMAGUCHI N, NAKAMURA T, DONG D, et al. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution[J]. Chemosphere, 2011, 83(7): 925-932.
[34]BOLAN N S, ADRIANO D C, MANI P A, et al. Immobilization and phytoavailability of cadmium in variable charge soils. Ⅱ. Effect of lime addition[J]. Plant and Soil, 2003, 251(2): 187-198.
[35]MARIN A R, MASSCHELEYN P H, PATRICK W H. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice[J]. Plant and Soil, 1993, 152(2): 245-253.
[36]MANNING B A, GOLDBERG S. Arsenic (Ⅲ) and arsenic (V) adsorption on three California soils[J]. Soil Science, 1997, 162(12): 886-895.
[37]余跃,王济,张浩,等. 土壤-植物系统中砷的研究进展[J]. 安徽农业科学, 2009, 37(7): 3210-3215.
[38]陈静,王学军,朱立军. pH对砷在贵州红壤中的吸附的影响[J]. 土壤, 2004, 36(2): 211-214.
[39]DIXIT S, HERING J G. Comparison of arsenic (V) and arsenic (Ⅲ) sorption onto iron oxide minerals: implications for arsenic mobility[J]. Environmental Science and Technology, 2003, 37(18): 4182-4189.
[40]CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707.
[41]DUAN G, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
[42]ZHU Y G, GENG C N, TONG Y P, et al. Phosphate (Pi) and arsenate uptake by two wheat (Triticum aestivum) cultivars and their doubled haploid lines[J]. Annals of Botany, 2006, 98(3): 631-636.
[43]WU Z C, REN, H Y, MCGRATH S P, et al. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J]. Plant Physiology, 2011, 157(1): 498-508.
[44]KAMIYA T, ISLAM R, DUAN G, et al. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Science and Plant Nutrition, 2013, 59(4): 580-590.
[45]CAO Y, SUN D, AI H, et al. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains[J]. Environmental Science and Technology, 2017, 51(21): 12131-12138.
[46]SHI G L, MA H X, CHEN Y L, et al. Low arsenate influx rate and high phosphorus concentration in wheat (Triticum aestivum L.): a mechanism for arsenate tolerance in wheat plants[J]. Chemosphere, 2019, 214: 94-102.
[47]ZHAO F J, MEHARG A A, MCGATH S P. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies[J]. Annual Review of Plant Biology, 2010, 61: 535-559.
[48]MA J F, YAMAJI N, MITANI N, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935.
[49]MA J F, TAMAI K, YAMAJI N, et al. A silicon transporter in rice[J]. Nature, 2006, 440(7084): 688-691.
[50]MA J F, YAMAJI N, MITANI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-213.
[51]ZHAO F J, AGO Y, MITANI N, et al. The role of the rice aquaporin Lsi1 in arsenite efflux from roots[J]. New Phytologist, 2010, 186(2): 392-399.
[52]LOMAX C, LIU W J, WU L Y, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
[53]RAAB A, WILLIAMS P N, MEHARG A A, et al. Uptake and translocation of inorganic and methylated arsenic species by plants[J]. Environmental Chemistry, 2007, 4(3): 197-203.
[54]ZHENG M Z, CAI C, HU Y, et al. Spatial distribution of arsenic and temporal variation of its concentration in rice[J]. New Phytologist, 2011, 189(1): 200-209.
[55]LI R Y, AGO Y, LIU W J, et al. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiology, 2009, 150(4): 2071-2080.
[56]NAKANISHI H, OGAWA I, ISHIMARU Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469.
[57]LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630.
[58]ISHIMARU Y, TAKAHASHI R, BASHIR K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(1): 989-993.
[59]SASAKI A, YAMAJI N, YOKOSHO K, et al. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. Plant Cell, 2012, 24(5): 2155-5167.
[60]WU J W, MOCK H P, GIEHL R F H, et al. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants[J]. Journal of Hazardous Materials, 2019, 364: 581-590.
[61]YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies[J]. Nature Communications, 2019, 10(1): 2562.
[62]TANG L, QU M, ZHU Y, et al. Zinc transporter5 and zinc transporter9 function synergistically in zinc/cadmium uptake[J]. Plant Physiology, 2020, 183(3): 1235-1249.
[63]LIU X S, FENG S J, ZHANG B Q, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice[J]. BMC Plant Biology, 2019,19(1): 283.
[64]CHAO D Y, CHEN Y, CHEN J G, et al. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants[J]. PLoS Biology, 2014, 12(12): e1002009.
[65]SHI G L, ZHU S, MENG J R, et al. Variation in arsenic accumulation and translocation among wheat cultivars: the relationship between arsenic accumulation, efflux by wheat roots and arsenate tolerance of wheat seedlings[J]. Journal of Hazardous Materials, 2015, 289: 190-196.
[66]SHI S L, WANG T, CHEN Z R, et al. OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiology, 2016, 172(3): 1708-1719.
[67]SONG W Y, YAMAKI T, YAMAJI N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J]. Proceedings of the National Academy of Sciences, 2014, 111(44): 15699-15704.
[68]LIU W, WOOD B A, RAAB A, et al. Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis[J]. Plant Physiology, 2010, 152(4): 2211-2221.
[69]PARK J, SONG W Y, KO D, et al. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J]. The Plant Journal, 2012, 69(2): 278-288.
[70]SUN S K, CHEN Y, CHE J, et al. Decreasing arsenic accumulation in rice by overexpressing OsNIP 1; 1 and OsNIP 3; 3 through disrupting arsenite radial transport in roots[J]. New Phytologist, 2018, 219(2): 641-653.
[71]TANG Z, CHEN Y, MILLER A J, et al. The C-type ATP-binding cassette transporter OsABCC7 is involved in the root-to-shoot translocation of arsenic in rice[J]. Plant and Cell Physiology, 2019, 60(7): 1525-1535.
[72]UENO D, YAMAJI N, KONO I, et al. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(38): 16500-16505.
[73]MIYADATE H, ADACHI S, HIRAIZUMI A, et al. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199.
[74]ZHANG L, GAO C, CHEN C, et al. Overexpression of rice OsHMA3 in wheat greatly decreases cadmium accumulation in wheat grains[J]. Environmental Science and Technology, 2020, 54(16): 10100-10108.
[75]TAKAHASHI R, ISHIMARU Y, SHIMO H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell and Environment, 2012, 35(11): 1948-1957.
[76]TAN L, ZHU Y, FAN T, et al. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice[J]. Biochemical and Biophysical Research Communications, 2019, 512(1): 112-118.
[77]LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1): 645.
[78]FUJIMAKI S, SUZUI N, ISHIOKA N S, et al. Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806.
[79]URAGUCHI S, KAMIYA T, SAKAMOTO T, et al. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences, 2011, 108(52): 20959-20964.
[80]HUANG G X, DING C F, GUO F Y, et al. The role of node restriction on cadmium accumulation in the brown rice of 12 Chinese rice (Oryza sativa L.) cultivars[J]. Journal of Agricultural and Food Chemistry, 2017, 65(47): 10157-10164.
[81]YAMAJI N, XIA J X, MITANI-UENO N, et al. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2[J]. Plant Physiology, 2013, 162(2): 927-939.
[82]SATOH-NAGASAWA N, MORI M, NAKAZAWA N, et al. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant and Cell Physiology, 2012, 53(1): 213-224.
[83]SASAKI A, YAMAJI N, MITANI-UNEO N, et al. A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice[J]. The Plant Journal, 2015, 84(2): 374-384.
[84]TIAN S, LIANG S, QIAO K, et al. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa)[J]. Journal of Hazardous Materials, 2019, 380: 120853.
[85]DUAN G L, HU Y, SCHNEIDER S, et al. Inositol transporters AtINT2 and AtINT4 regulate arsenic accumulation in Arabidopsis seeds[J]. Nature Plants, 2016, 2: 15202.
[86]LIU N, HUANG X M, SUN L M, et al. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China[J]. Chemosphere, 2020, 241: 125065.
[87]SHI G L, ZHU S, BAI S N, et al. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other[J]. Journal of Hazardous Materials, 2015, 299: 94-102.
[88]WEN E G, YANG X, CHEN H B, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials, 2021, 407: 124344.
[89]ZHENG R L, CAI C, LIANG J H, et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings[J]. Chemosphere, 2012, 89(10): 856-862.
[90]BOLAN N, MAHIMAIRAJA S, KUNHIKRISHNAN A, et al. Sorption-bioavailability nexus of arsenic and cadmium in variable-charge soils[J]. Journal of Hazardous Materials, 2013, 261: 725-732.
[91]ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106.
[92]WANG N, XUE X M, JUHASZ A L, et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution, 2017, 220: 514-522.
[93]CAI Y M, XU W B, WANG M E, et al. Mechanisms and uncertainties of Zn supply on regulating rice Cd uptake[J]. Environmental Pollution, 2019, 253: 959-965.
[94]YANG Y, LI Y L, CHEN W P, et al. Dynamic interactions between soil cadmium and zinc affect cadmium phytoavailability to rice and wheat: Regional investigation and risk modeling[J]. Environmental Pollution, 2020, 267: 115613.
[95]HUSSAIN B, LI J, MA Y, et al. Effects of Fe and Mn cations on Cd uptake by rice plant in hydroponic culture experiment[J]. PLoS One, 2020, 15(12): e0243174.
[96]LI R Y, STROUD J L, MA J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization[J]. Environmental Science and Technology, 2009, 43(10): 3778-3783.
[97]ZHENG H, WANG M, CHEN S B, et al. Sulfur application modifies cadmium availability and transfer in the soil-rice system under unstable pe + pH conditions[J]. Ecotoxicology and Environmental Safety, 2019, 184: 109641.
[98]SHI G L, LU H Y, LIU H, et al. Sulfate application decreases translocation of arsenic and cadmium within wheat (Triticum aestivum L.) plant[J]. Science of the Total Environment, 2020, 713: 136665.
[99]ZHANG S J, GENG L P, FAN L M, et al. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic-contaminated paddy soil[J]. Science of the Total Environment, 2020,704:135239.
[100]WANG H, XU C, LUO Z C, et al. Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions[J]. Environmental Science and Pollution Research, 2018, 25(29): 29287-29294.
[101]HUANG H L, LI M, RIZWAN M, et al. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants[J]. Journal of Hazardous Materials, 2021, 401: 123393.
[102]ZHOU J, ZHANG C, DU B Y, et al. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties[J]. Journal of Hazardous Materials, 2020, 402: 123546.
[103]TANG L, MAO B G, LI Y K, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438
[104]龙起樟, 黄永兰, 唐秀英, 等. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420.
[105]DENG L, LI Z, WANG J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies[J]. International Journal of Phytoremediation, 2016, 18(2):134-140.
[106]朱凰榕, 周良华, 阳 峰, 等. 两种景天修复Cd/Zn污染土壤效果的比较[J]. 生态环境学报, 2019, 28(2): 403-410.
[107]FAYIGA A O, SAHA U K. Arsenic hyperaccumulating fern: implications for remediation of arsenic contaminated soils[J]. Geoderma, 2016, 284: 132-143.
[108]YE W L, KHAN M A, MCGRATH S P, et al. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice[J]. Environmental Pollution, 2011, 159(12): 3739-3743.
[109]YANG J, GUO Y, YAN Y X, et al. Phytoaccumulation of As by Pteris vittata supplied with phosphorus fertilizers under different soil moisture regimes-A field case[J]. Ecological Engineering, 2019, 138: 274-280.