参考文献/References:
[1]SINGH K, KUMAR S, KAUR P. Support vector machine classifier based detection of fungal rust disease in pea plant (pisam sativam) [J]. International Journal of Information Technology,2019,11(3):485-492.
[2]张建华,孔繁涛,李哲敏,等. 基于最优二叉树支持向量机的蜜柚叶部病害识别[J].农业工程学报,2014,30(19):222-231.
[3]PARK H, EUN J S, KIM S H. Image-based disease diagnosing and predicting of the crops through the deep learning mechanism[C] //DOMAN T M. The 8th International Conference on Information and Communication Technology Convergence (ICTC). Jeju Island South Korea : IEEE Press,2017: 129-131.
[4]UMUT B K, OMER B G, OKTAY Y. Detection of plant diseases by machine learning[C] // HUSSEIN A. The 26th Signal Processing and Communications Applications Conference.Izmir Turkey:IEEE Press, 2018: 1-4.
[5]MANIYATH S R, VINOD P V, NIVEDITHA M, et al. Plant disease detection using machine learning[C] // HUSSEIN A. 26th Signal Processing and Communications Applications Conference.Izmir Turkey:IEEE Press,2018: 41-45.
[6]陈佳娟. 基于图像处理和人工智能的植物病害自动诊断技术的研究[D].长春:吉林大学,2001.
[7]王长斌.基于云计算的农作物病虫害多源遥感数据挖掘[J].电子技术,2016,45(3):15-17.
[8]ZHANG S W, SHANG Y J, WANG L . Plant disease recognition based on plant leaf image[J]. Journal of Animal and Plant Sciences, 2015, 25(3):42-45.
[9]SINGH V, VARSHA, MISRA A K . Detection of unhealthy region of plant leaves using image processing and genetic algorithm[C]//TORSTEN M. International Conference on Advances in Computer Engineering and Applications (ICACEA). Ghaziabad, India : IEEE Press, 2015 : 1028-1032
[10]GASSOUMI H. A soft computing approach for classification of insects in agricultural ecosystems[D].New Mexico: New Mexico State University, 2000.
[11]温芝元,曹乐平. 基于补偿模糊神经网络的脐橙不同病虫害图像识别[J].农业工程学报,2012,28(11):152-157.
[12]张建华,祁力钧,冀荣华,等. 基于粗糙集和BP神经网络的棉花病害识别[J].农业工程学报,2012,28(7):161-167.
[13]黄双萍,孙超,齐龙,等. 基于深度卷积神经网络的水稻穗瘟病检测方法[J].农业工程学报,2017,33(20):169-176.
[14]MOHANTY S P, HUGHES D P, SALATHE M . Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7:1419.
[15]杨秀坤,陈晓光. 用遗传神经网络方法进行苹果颜色自动检测的研究[J]. 农业工程学报, 1997, 13(2): 173-176.
[16]王克如. 基于图像识别的作物病虫草害诊断研究[D].北京:中国农业科学院,2005.
[17]龚丁禧,曹长荣. 基于卷积神经网络的植物叶片分类[J].计算机与现代化,2014(4):12-15,19.
[18]王春山,周冀,吴华瑞,等. 改进Multi-scale ResNet的蔬菜叶部病害识别[J].农业工程学报,2020,36(20):209-217.
[19]HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] // NIKOS K. The 15th Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Boston American :IEEE Press,2016:770-778.
[20]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C] // PEREIRA F, BURGES C J C. The 25th International Conference on Neural Information Processing Systems. Nevada American :MIT Press,2012: 1097-1105.
[21]GOMEZ-OJEDA R, LOPEZ-ANTEQUERA M, PETKOV N, et al. Training a convolutional neural network for appearance-invariant place recognition[J]. Computer Ence,2017, 92(1):89-95.
[22]SZEGEDY C, WEI L, JIA Y, et al. Going deeper with convolutions[C] //CONNELLY B, JUNHWA H. The 33th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston American :IEEE Press, 2015 : 1-9.
[23]方晨晨,石繁槐. 基于改进深度残差网络的番茄病害图像识别[J].计算机应用,2020,40(S1):203-208.
[24]张建华,孔繁涛,吴建寨,等. 基于改进VGG卷积神经网络的棉花病害识别模型[J].中国农业大学学报,2018,23(11):161-171.