[1]姚启伦,霍仕平,张俊军.玉米自交系响应高温、干旱胁迫的关键基因及通路[J].江苏农业学报,2021,(01):29-37.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
 YAO Qi-lun,HUO Shi-ping,ZHANG Jun-jun.Key genes and pathways of maize inbred lines responding to heat and drought stress[J].,2021,(01):29-37.[doi:doi:10.3969/j.issn.1000-4440.2021.01.004]
点击复制

玉米自交系响应高温、干旱胁迫的关键基因及通路()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
29-37
栏目:
遗传育种·生理生化
出版日期:
2021-02-28

文章信息/Info

Title:
Key genes and pathways of maize inbred lines responding to heat and drought stress
作者:
姚启伦1霍仕平2张俊军3
(1.长江师范学院现代农业与生物工程学院,重庆涪陵408100;2.重庆三峡农业科学院,重庆万州404100;3.黑龙江禾田丰泽兴农科技开发有限公司,黑龙江哈尔滨067500)
Author(s):
YAO Qi-lun1HUO Shi-ping2ZHANG Jun-jun3
(1.School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, China;2.Chongqing Three Gorges Acodemy of Agricultural Science, Chongqing 404100, China;3.Heilongjiang Hetian Fengze Agriculture Science and Technology Development Co., Ltd., Harbin 067500, China)
关键词:
玉米自交系高温、干旱胁迫转录组差异表达基因通路
Keywords:
maize inbred linesheat and drought stresstranscriptomedifferentially expressed genes(DEGs)pathways
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2021.01.004
文献标志码:
A
摘要:
以4个不同的玉米自交系为材料,对高温、干旱处理后的苗期植株进行转录组测序。玉米自交系响应高温和干旱胁迫的差异表达基因(DEGs)分别为6 966和6 272个,在高温和干旱胁迫下4个玉米自交系相同的DEGs分别是705和871个。同时响应高温和干旱的DEGs有100个。在耐旱、耐热性强的玉米自交系中鉴定出18个特异的DEGs,其中锌指转录因子、WRKY转录因子、GT转录因子和B2热激转录因子在胁迫响应中发挥关键的调控作用。KEGG通路分析结果表明,耐旱、耐热性强玉米自交响应高温干旱胁迫的DEGs富集在生物学过程、分子功能、代谢过程、遍在蛋白代谢和氮代谢途径5条通路。热带、亚热带玉米种质的耐旱、耐热性强于温带玉米种质,可在热带、亚热带玉米种质中有效筛选耐旱、耐热基因。
Abstract:
Transcriptome sequencing of the four different maize inbred lines subjected to high temperatures and water deficits, was performed at the stage of seedling. In total, 6 966 heat-responsive and 6 272 drought-responsive differentially expressed genes(DEGs) were identified in the four maize lines. In addition, 705 and 871 DEGs were identified as being commonly associated with heat and drought stress, respectively. There were 100 DEGs responding to both heat and drought stress. Eighteen DEGs were identified in maize inbred lines with strong drought tolerance and heat tolerance. The zinc finger transcription factor, WRKY transcription factor, GT transcription factor and B2 heat shock transcription factor played key regulatory roles in stress response. Analyses of KEGG pathway enrichment showed that the pathways such as biological process, molecular function, metabolic process, protein ubiquitination metabolism and nitrogen metabolism were the most highly enriched in the maize lines tolerant to heat and drought. It can be concluded that tropical and subtropical maize is tolerant to heat and drought, implying that it is plausible to screen goal genes in the tropical and subtropical germplasm.

参考文献/References:

[1]KADAM N N, XIAO G, MELGAR R J, et al. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals[J]. Advances in Agronomy, 2014, 127: 111-156.
[2]LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333: 616-620.
[3]GONG F, YANG L, TAI F, et al. “Omics” of maize stress response for sustainable food production: opportunities and challenges[J]. OMICS, 2014, 18: 714-732.
[4]王晓琴,袁继超,熊庆娥. 玉米抗旱性的研究及展望[J]. 玉米科学,2002,10(1):57-60.
[5]齐健,宋凤斌,刘胜群. 苗期玉米根叶对干旱胁迫的生理响应[J]. 生态环境,2006,15(6):1264-1268.
[6]吴昊,李燕敏,谢传晓. 作物耐热生理基础与基因发掘研究进展[J]. 作物杂志,2018(5):1-9.
[7]刘克禄,陈卫国. 植物耐热相关基因研究进展[J]. 植物遗传资源学报,2015,16(1):127-132.
[8]付景,孙宁宁,刘天学,等. 高温胁迫对玉米形态、叶片结构及其产量的影响[J].玉米科学,2019,27(1):46-53.
[9]KARIM M A, FRACHEBOUD Y, STAMP P. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes[J]. Agronomy and Crop Sci, 2000, 184: 217-223.
[10]HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. Int J Mol Sci, 2013, 14: 9643-9684.
[11]BIAT C A, GERATS T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops[J]. Front Plant Sci, 2013, 4: 273.
[12]KARIM M A, FRACHEBOUD Y, STAMP P. Photosynthetic activity of developing leaves of Zea mays less affected by heat stress than that of developed leaves[J]. Plant Physiol, 1999, 105: 685-691.
[13]BERRY J, BJOKMAN O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 98(673): 491-543.
[14]WATERS A J, MAKAREVITCH I, NOSHAY J. Natural variation for gene expression responses to abiotic stress in maize[J]. The Plant Journal, 2017, 89: 706-717.
[15]裴志超,张伟强,周继华,等. 干旱胁迫对不同基因型玉米产量及其构成因素的影响[J]. 玉米科学,2019,27(4):115-124.
[16]MCGETTIGAN P A. Transcriptomics in the RNA-seq era[J]. Curr Opin Chem Biol, 2013, 17: 4-11.
[17]CASARETTO J A, El-KEREAMY A, ZENG B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17: 312-327.
[18]MEYER R S, PURUGGANAN M D. Evolution of crop species: genetics of domestication and diversification[J]. Nat Rev Genet, 2013, 14: 840-852.
[19]张健,唐露,张雅洁,等. 转录组测序技术在植物水淹胁迫研究中的应用[J]. 分子植物育种,2019,17(4):1191-1202.
[20]LI P C, CAO W, FANG H M, et al. Transcriptic profiling maize (Zay mays L.) leaf response to abiotic stresses at the seedling stage[J]. Front Plant Sci, 2017, 8: 290-305.
[21]张丽梅,贺立源,李建生. 玉米自交系耐低磷材料苗期筛选研究 [J]. 中国农业科学,2004,37(12): 1955-1959.
[22]HORTENSTEINER S. Chlorophyll degradation during senescence[J]. Annu Rev Plant Biol, 2006, 57:55-77.
[23]CHEN J P, BURKE J J, XIN Z G. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature[J]. BMC Plant Biology, 2018, 18: 11-24.
[24]DABROWSKI P, BACZEWSKA A H, PAWLUSKIEWICZ B, et al. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass[J]. J Photochem Photobiol B, 2016, 157: 22-31.
[25]SU L Y, DAI Z W, LI S H. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence[J]. BMC Plant Biology, 2015, 15: 82-94.
[26]SCHREIBER U, SCHLIWA U, BILGER W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynth Res, 1986, 10: 51-62.
[27]YU Q, SHEN Y, WANG Q, et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata[J]. Trees, 2019, 33: 11-22.
[28]李小芳,张志良. 植物生理学实验指导 [M]. 北京:高等教育出版社,2015.
[29]KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
[30]WU T D, NACU S. Fast and SNP-tolerant detection of complex variants and splicing in short reads[J]. Bioinformatics, 2010, 26: 873-881.
[31]BIANCHI V J, RUBIO M, TRAINOTTI L, et al. Prunus transcription factors: breeding perspectives[J]. Front Plant Sci, 2015, 6: 443-449.
[32]ZENDA T S, LIU S T, WANG X, et al. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms[J]. Int J Mol Sci, 2018, 19: 3225.
[33]WANG H, WANG H, SHAO H, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Front Plant Sci, 2016,7:67-73.
[34]LUO M, ZHAO Y, WANG Y, et al. Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms[J]. J. Proteome Res, 2018, 17: 141-153.
[35]SHINDE H, TANAKA K, DUDHATE A, et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines[J]. Environ Exp Bot, 2018, 155: 619-627.
[36]ZENDA T S, LIU S T, WANG X, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines[J]. Int J Mol Sci, 2019,20:1268.
[37]AHMADI A, EMAM Y, PESSARAKLI M. Biochemical changes in maize seedlings exposed to drought stress conditions at different nitrogen levels[J]. J Plant Nutr, 2010, 33: 541-556.

备注/Memo

备注/Memo:
收稿日期:2020-03-17基金项目:国家自然科学基金项目(31371633);重庆市教委优秀成果转化项目(KJZH17133)作者简介:姚启伦(1964-),男,重庆万州人,博士,教授,主要从事玉米遗传育种研究。(Tel)13908253365;(E-mail)yql641@aliyun.com
更新日期/Last Update: 2021-03-15