参考文献/References:
[1]KADAM N N, XIAO G, MELGAR R J, et al. Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals[J]. Advances in Agronomy, 2014, 127: 111-156.
[2]LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333: 616-620.
[3]GONG F, YANG L, TAI F, et al. “Omics” of maize stress response for sustainable food production: opportunities and challenges[J]. OMICS, 2014, 18: 714-732.
[4]王晓琴,袁继超,熊庆娥. 玉米抗旱性的研究及展望[J]. 玉米科学,2002,10(1):57-60.
[5]齐健,宋凤斌,刘胜群. 苗期玉米根叶对干旱胁迫的生理响应[J]. 生态环境,2006,15(6):1264-1268.
[6]吴昊,李燕敏,谢传晓. 作物耐热生理基础与基因发掘研究进展[J]. 作物杂志,2018(5):1-9.
[7]刘克禄,陈卫国. 植物耐热相关基因研究进展[J]. 植物遗传资源学报,2015,16(1):127-132.
[8]付景,孙宁宁,刘天学,等. 高温胁迫对玉米形态、叶片结构及其产量的影响[J].玉米科学,2019,27(1):46-53.
[9]KARIM M A, FRACHEBOUD Y, STAMP P. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes[J]. Agronomy and Crop Sci, 2000, 184: 217-223.
[10]HASANUZZAMAN M, NAHAR K, ALAM M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. Int J Mol Sci, 2013, 14: 9643-9684.
[11]BIAT C A, GERATS T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops[J]. Front Plant Sci, 2013, 4: 273.
[12]KARIM M A, FRACHEBOUD Y, STAMP P. Photosynthetic activity of developing leaves of Zea mays less affected by heat stress than that of developed leaves[J]. Plant Physiol, 1999, 105: 685-691.
[13]BERRY J, BJOKMAN O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annu Rev Plant Physiol, 1980, 98(673): 491-543.
[14]WATERS A J, MAKAREVITCH I, NOSHAY J. Natural variation for gene expression responses to abiotic stress in maize[J]. The Plant Journal, 2017, 89: 706-717.
[15]裴志超,张伟强,周继华,等. 干旱胁迫对不同基因型玉米产量及其构成因素的影响[J]. 玉米科学,2019,27(4):115-124.
[16]MCGETTIGAN P A. Transcriptomics in the RNA-seq era[J]. Curr Opin Chem Biol, 2013, 17: 4-11.
[17]CASARETTO J A, El-KEREAMY A, ZENG B, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance[J]. BMC Genomics, 2016, 17: 312-327.
[18]MEYER R S, PURUGGANAN M D. Evolution of crop species: genetics of domestication and diversification[J]. Nat Rev Genet, 2013, 14: 840-852.
[19]张健,唐露,张雅洁,等. 转录组测序技术在植物水淹胁迫研究中的应用[J]. 分子植物育种,2019,17(4):1191-1202.
[20]LI P C, CAO W, FANG H M, et al. Transcriptic profiling maize (Zay mays L.) leaf response to abiotic stresses at the seedling stage[J]. Front Plant Sci, 2017, 8: 290-305.
[21]张丽梅,贺立源,李建生. 玉米自交系耐低磷材料苗期筛选研究 [J]. 中国农业科学,2004,37(12): 1955-1959.
[22]HORTENSTEINER S. Chlorophyll degradation during senescence[J]. Annu Rev Plant Biol, 2006, 57:55-77.
[23]CHEN J P, BURKE J J, XIN Z G. Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature[J]. BMC Plant Biology, 2018, 18: 11-24.
[24]DABROWSKI P, BACZEWSKA A H, PAWLUSKIEWICZ B, et al. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in perennial ryegrass[J]. J Photochem Photobiol B, 2016, 157: 22-31.
[25]SU L Y, DAI Z W, LI S H. A novel system for evaluating drought-cold tolerance of grapevines using chlorophyll fluorescence[J]. BMC Plant Biology, 2015, 15: 82-94.
[26]SCHREIBER U, SCHLIWA U, BILGER W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynth Res, 1986, 10: 51-62.
[27]YU Q, SHEN Y, WANG Q, et al. Light deficiency and waterlogging affect chlorophyll metabolism and photosynthesis in Magnolia sinostellata[J]. Trees, 2019, 33: 11-22.
[28]李小芳,张志良. 植物生理学实验指导 [M]. 北京:高等教育出版社,2015.
[29]KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.
[30]WU T D, NACU S. Fast and SNP-tolerant detection of complex variants and splicing in short reads[J]. Bioinformatics, 2010, 26: 873-881.
[31]BIANCHI V J, RUBIO M, TRAINOTTI L, et al. Prunus transcription factors: breeding perspectives[J]. Front Plant Sci, 2015, 6: 443-449.
[32]ZENDA T S, LIU S T, WANG X, et al. Comparative proteomic and physiological analyses of two divergent maize inbred lines provide more insights into drought-stress tolerance mechanisms[J]. Int J Mol Sci, 2018, 19: 3225.
[33]WANG H, WANG H, SHAO H, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Front Plant Sci, 2016,7:67-73.
[34]LUO M, ZHAO Y, WANG Y, et al. Comparative proteomics of contrasting maize genotypes provides insights into salt-stress tolerance mechanisms[J]. J. Proteome Res, 2018, 17: 141-153.
[35]SHINDE H, TANAKA K, DUDHATE A, et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines[J]. Environ Exp Bot, 2018, 155: 619-627.
[36]ZENDA T S, LIU S T, WANG X, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines[J]. Int J Mol Sci, 2019,20:1268.
[37]AHMADI A, EMAM Y, PESSARAKLI M. Biochemical changes in maize seedlings exposed to drought stress conditions at different nitrogen levels[J]. J Plant Nutr, 2010, 33: 541-556.