[1]刘俊伟,陈鹏飞,张东彦,等.基于时序Sentinel-2影像的梨树县作物种植结构[J].江苏农业学报,2020,(06):1428-1436.[doi:doi:10.3969/j.issn.1000-4440.2020.06.011]
 LIU Jun-wei,CHEN Peng-fei,ZHANG Dong-yan,et al.Crop planting structure in Lishu County based on time-series Sentinel-2 images[J].,2020,(06):1428-1436.[doi:doi:10.3969/j.issn.1000-4440.2020.06.011]
点击复制

基于时序Sentinel-2影像的梨树县作物种植结构()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1428-1436
栏目:
耕作栽培·资源环境
出版日期:
2020-12-31

文章信息/Info

Title:
Crop planting structure in Lishu County based on time-series Sentinel-2 images
作者:
刘俊伟12陈鹏飞13张东彦2赵红伟4
(1.中国科学院地理科学与资源研究所/资源与环境信息系统国家重点实验室,北京100101;2.安徽大学农业生态大数据分析与应用技术国家地方联合工程技术研究中心,安徽合肥230601;3.江苏省地理信息资源开发与利用协同创新中心,江苏南京210023;4.中国农业科学院农业资源与农业区划研究所,北京100081)
Author(s):
LIU Jun-wei12CHEN Peng-fei13ZHANG Dong-yan2ZHAO Hong-wei4
(1.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China;2.National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, Hefei 230601, China;3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;4.Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)
关键词:
作物种植结构Sentinel-2光谱特征
Keywords:
crop planting structureSentinel-2spectral characteristics
分类号:
S127
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.011
文献标志码:
A
摘要:
Sentinel-2影像具有空间分辨率高,重访周期短的优势。本研究探讨了基于Sentinel-2数据开展梨树县作物精准分类,进而进行种植结构分析的可行性。为此,收集了多时相的Sentinel-2影像和大量地面不同作物类型样点数据。基于以上数据,选择决策树法、最大似然法、支持向量机法等3种经典分类方法开展影像分类,并对它们的结果进行对比以选择最优分类方法。然后,利用最优分类方法获得的分类结果对梨树县作物种植结构进行分析。结果表明,基于时序Sentinel-2影像,利用作物的物候特征与其光谱特征之间的联系可实现对梨树县作物种植面积和空间分布信息的准确提取,从而对该县种植结构进行客观评价。3种分类方法中,决策树法的分类精度最高,其总体分类精度为93.53%,Kappa系数达到0.890 6 。
Abstract:
Sentinel-2 images have the advantages of high spatial resolution and short revisit cycle. This study investigated the feasibility of making accurate classification of crops and planting structure analysis in Lishu County based on Sentinel-2 data. Multi-temporal Sentinel-2 images and a large number of ground sample data of different crops were collected. Based on the above data, three classic classification methods including decision tree method, maximum likelihood method and support Vector machine method were selected in image classification, and their results were compared to select the best classification method. Then, the classification results obtained by the best method were used to analyze the crop planting structure of Lishu County. The results showed that based on time-series Sentinel-2 images, the planting area and spatial distribution information of crops in Lishu County could be extracted accurately by combining the phenological characteristics and spectral characteristics of the crops, then the planting structure of the county could be evaluated objectively. Among the three classification methods, the decision tree method got the best results, with the overall classification accuracy of 93.53% and the Kappa coefficient value of 0.890 6.

参考文献/References:

[1]胡琼,吴文斌,宋茜,等. 农作物种植结构遥感提取研究进展[J].中国农业科学,2015,48(10):1900-1914.
[2]唐华俊,吴文斌,杨鹏,等. 农作物空间格局遥感监测研究进展[J].中国农业科学,2010,43(14):2879-2888.
[3]张养贞,张树文,常丽萍,等. 县级玉米遥感估产实验及其效果研究[J].地理科学,1995(2):144-153.
[4]张荣群,王盛安,高万林,等. 基于时序植被指数的县域作物遥感分类方法研究[J].农业机械学报,2015,46(S1):246-252.
[5]刘珺,田庆久,黄彦,等. 利用多时相HJ卫星CCD遥感影像提取嘉祥县秋收作物[J].遥感信息,2012,27(2):67-70.
[6]NASRALLAH A, BAGHDADI N, MHAWEJ M, et al. A novel approach for mapping wheat areas using high resolution sentinel-2 images[J].Sensors, 2018,18:7.
[7]SONOBE R, YAMAYA Y, TANI H, et al. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning[J].Journal of Applied Remote Sensing,2018,12(2):26-45.
[8]ZHU J, PAN Z W, WANG H, et al. An improved multi-temporal and multi-feature tea plantation identification method using Sentinel-2 imagery[J].Sensors,2019,19:9.
[9]CORENTIN B, ADRIEN M, PETER G, et al. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery[J].Biotechnologie,Agronomie,Société et Environnement,2018,22:3.
[10]王大钊,王思梦,黄昌. Sentinel-2和Landsat8影像的四种常用水体指数地表水体提取对比[J].国土资源遥感,2019,31(3):157-165.
[11]刘怀鹏,安慧君. 基于Sentinel-2A的农田包围型村落提取[J].内蒙古农业大学学报(自然科学版),2019,40(3):41-45.
[12]王祁春,张柏,张树文,等. 玉米长势区域分异遥感监测──以松嫩平原玉米遥感估产实验区(梨树县)为例[J].遥感信息,1994(4):20-23.
[13]平跃鹏,臧淑英. 基于MODIS时间序列及物候特征的农作物分类[J].自然资源学报,2016,31(3):503-513.
[14]张晓萌,刘建祥,温馨,等. 基于遥感的植被覆盖度和水土流失信息提取[J].水土保持,2017,5(4):21-28.
[15]范唯唯. Sentinel-2B卫星发射成功[J].空间科学学,2017,37(4):371-372.
[16]张润雷. 基于决策树的遥感图像分类综述[J].电子制作,2018(24):16-18,55.
[17]AHMED K R, AKTER S. Analysis of landcover change in southwest bengal delta due to floods by NDVI, NDWI and K-Means cluster with landsat Multi-spectral surface reflectance satellite data[J].Remote Sensing Applications: Society and Environment,2017(8):168-181.
[18]刘人午. 基于LANDSAT卫星数据对内江主城区城市绿化监测研究[J].内江科技,2017,38(12):38-41.
[19]TIAN Y C, BAI X Y, WANG S J, et al. Spatial-temporal changes of vegetation cover in guizhou province, southern China[J].Chinese Geographical Science,2017,27(1):25-38.
[20]王婷婷,李山山,李安,等. 基于Landsat 8卫星影像的北京地区土地覆盖分类[J].中国图象图形学报,2018,20(9):1275-1284.
[21]李平,吴曼乔,曾联明. 支持向量机技术在土地利用监测的应用研究[J].测绘通报,2010(8):28-30.
[22]ZHANG C, JIN H, LIU Z, et al. Seed maize identification based ontexture analysis of GF remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(21):183-188.
[23]赵建鹏,李国洪,金永涛,等. 县域尺度上基于多时相影像的冬小麦面积监测[J].河北师范大学学报(自然科学版),2018,42(6):524-530.
[24]杜保佳,张晶,王宗明,等. 应用Sentinel-2A NDVI时间序列和面向对象决策树方法的农作物分类[J].地球信息科学学报,2019,21(5):740-751.
[25]钱铭杰. RVI与NDVI在植被信息提取中的应用比较[C]//中国地理信息系统协会中国遥感协会.第七届ArcGIS暨ERDAS中国用户大会论文集.北京:地震出版社,2006:662-666.
[26]王姝力,王志勇,王磊. 基于Landsat-8和Sentinel-1A辽东湾海冰分类研究[J].北京测绘,2019,33(12):1486-1492.
[27]许童羽,胡开越,周云成,等. 基于CART决策树和BP神经网络的landsat 8影像粳稻提取方法[J].沈阳农业大学学报,2020,51(2):169-176.

相似文献/References:

[1]孙庆松,张晓楠,陈利东,等.基于Sentinel-2时序谐波特征的县域农作物分类[J].江苏农业学报,2022,38(04):967.[doi:doi:10.3969/j.issn.1000-4440.2022.04.013]
 SUN Qing-song,ZHANG Xiao-nan,CHEN Li-dong,et al.Crop classification in counties based on Sentinel-2 temporal harmonic characteristics[J].,2022,38(06):967.[doi:doi:10.3969/j.issn.1000-4440.2022.04.013]
[2]李亚妮,曹建君,杨树文,等.基于决策树的大尺度复杂地区夏收作物遥感提取与分析[J].江苏农业学报,2022,38(05):1257.[doi:doi:10.3969/j.issn.1000-4440.2022.05.012]
 LI Ya-ni,CAO Jian-jun,YANG Shu-wen,et al.Extraction and analysis of summer crops in large-scale complex areas based on decision tree[J].,2022,38(06):1257.[doi:doi:10.3969/j.issn.1000-4440.2022.05.012]
[3]于天祥,樊红.基于Sentinel-2多时相遥感影像的冬小麦种植面积监测[J].江苏农业学报,2024,(09):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]
 YU Tianxiang,FAN Hong.Remote sensing monitoring of winter wheat planting area based on multi-temporal Sentinel-2 imagery[J].,2024,(06):1653.[doi:doi:10.3969/j.issn.1000-4440.2024.09.009]

备注/Memo

备注/Memo:
收稿日期:2020-04-10基金项目:国家重点研发计划项目 (2017YFD0201501);国家自然科学基金项目 (41871344);中国科学院战略先导科技专项(XDA23100100)作者简介:刘俊伟(1996-),男,安徽合肥人,硕士研究生,研究方向为农业遥感。(Tel)15979096269;(E-mail)844385476@qq.com通讯作者:陈鹏飞,(Tel)13811997067;(E-mail)pengfeichen@igsnrr.ac.cn
更新日期/Last Update: 2021-01-15