[1]廖娟,陈民慧,汪鹞,等.基于双重Gamma校正的秧苗图像增强算法[J].江苏农业学报,2020,(06):1411-1418.[doi:doi:10.3969/j.issn.1000-4440.2020.06.009]
 LIAO Juan,CHEN Min-hui,WANG Yao,et al.Image enhancement algorithm for seedling image with dual gamma correction[J].,2020,(06):1411-1418.[doi:doi:10.3969/j.issn.1000-4440.2020.06.009]
点击复制

基于双重Gamma校正的秧苗图像增强算法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年06期
页码:
1411-1418
栏目:
耕作栽培·资源环境
出版日期:
2020-12-31

文章信息/Info

Title:
Image enhancement algorithm for seedling image with dual gamma correction
作者:
廖娟1陈民慧1汪鹞1邹禹2张顺1张培江2朱德泉1
(1.安徽农业大学工学院,安徽合肥230036;2.安徽省农业科学院水稻研究所,安徽合肥230031)
Author(s):
LIAO Juan1CHEN Min-hui1WANG Yao1ZOU Yu2ZHANG Shun1ZHANG Pei-jiang2ZHU De-quan1
(1.School of Engineering, Anhui Agricultural University, Hefei 230036, China;2.Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China)
关键词:
秧苗图像图像增强自适应Gamma校正色彩饱和度修复
Keywords:
seedling imageimage enhancementadaptive gamma correctioncolor saturation restoration
分类号:
TP391.4
DOI:
doi:10.3969/j.issn.1000-4440.2020.06.009
文献标志码:
A
摘要:
为了提高复杂光照条件下水田秧苗图像的视觉效果,提出1种基于双重Gamma校正的秧苗图像增强算法。将原始RGB[红(R)-绿(G)-蓝(B)]图像转换成HSV[色调(H)-饱和度(S)-亮度(V)]颜色空间图像,对V分量进行亮度区域划分;通过快速引导滤波法提取秧苗图像的光照度分量,利用光照信息的分布特性自适应地设置Gamma控制参数,并构建2个自适应Gamma函数,实现对V分量图像亮度的独立校正;最后,对校正后的图像进行自适应融合,并结合H、S分量转换为RGB图像,进行色彩饱和度的恢复。结果表明,本研究算法能够实现不同光照条件下秧苗图像的自适应增强,丰富图像中的有用信息,保真原图像的色彩信息,有效改善图像的视觉效果,为后期的秧苗分割提供可靠的处理对象。
Abstract:
To improve the visual effect of seedling images under complex illumination conditions, an image enhancement algorithm based on dual gamma correction was proposed. The original RGB image was firstly converted into HSV color space image, and the V component was extracted and partitioned into dark and bright regions. The illumination component of seedling image was obtained by the fast guided filtering method. The gamma control parameters were dynamically adjusted by the local distribution characteristics of illumination, and two adaptive gamma functions were constructed to correct the luminance of V-component image. Then, the corrected images were fused adaptively. Combining with H and S components, the fused V image was used to obtain the RGB image. Finally, the color saturation restoration was carried out for RGB image to solve the color deviation. Experimental results show that the algorithm can achieve adaptive enhancement of seedling images under different lighting conditions, enrich the useful information in the image, maintain the color information of the original image, effectively improve the visual effect of the image, and provide reliable processing objects for seedling segmentation.

参考文献/References:

[1]关卓怀,陈科尹,丁幼春,等. 水稻收获作业视觉导航路径提取方法[J]. 农业机械学报, 2019, 45(9): 44-54.
[2]刘波,杨长辉,熊龙烨,等. 果园自然环境下采摘机器人路径识别方法[J].江苏农业学报,2019,35(5):1222-1231.
[3]REN G Q, TAO L, YING Y B, et al. Agricultural robotics research applicable to poultry production: a review[J]. Computers and Electronics in Agriculture, 2020, 169: 1-14.
[4]YIN J N, ZHU D Q, LIAO J, et al. Automatic steering control algorithm based on compound fuzzy PID for rice transplanter[J]. Applied Sciences, 2019, 9(13): 1-14.
[5]何杰,朱金光,张智刚,等. 水稻插秧机自动作业系统设计与试验[J].农业机械学报,2019,50(3):17-24.
[6]廖娟,汪鹞,尹俊楠,等. 基于分区域特征点聚类的秧苗行中心线提取[J].农业机械学报,2019,50(11):34-41.
[7]QIAO X, BAO J H, ZHANG H, et al. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform[J]. Information Processing in Agriculture, 2017, 4(3): 206-213.
[8]HUANG S C, CHENG F C, CHIU Y S. Efficient contrast enhancement using adaptive gamma correction with weighting distribution[J]. IEEE Transactions on Image Processing, 2013, 22(3):1032-1041.
[9]姬伟,吕兴琴,赵德安,等. 苹果采摘机器人夜间图像边缘保持的Retinex增强算法[J]. 农业工程学报, 2016, 32(6):189-196.
[10]JI W, QIAN Z, XU B, et al. Apple tree branch segmentation from images with small gray-level difference for agricultural harvesting robot[J]. Optik, 2016, 127(23): 11173-11182.
[11]王殿伟,王晶,许志杰,等. 一种光照不均匀图像的自适应校正算法[J]. 系统工程与电子技术, 2017, 39(6): 1383-1390.
[12]张军国,程浙安,胡春鹤,等. 野生动物监测光照自适应 Retinex图像增强算法[J]. 农业工程学报, 2018,34(15):183-189.
[13]YANG K F, LI H, KUANG H, et al. An adaptive method for image dynamic range adjustment [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(3): 640-652.
[14]刘志成,王殿伟,刘颖,等. 基于二维伽马函数的光照不均匀图像自适应校正算法[J]. 北京理工大学学报, 2016, 36(2): 191-196.
[15]李颀,王康,强华,等. 基于颜色和纹理特征的异常玉米种穗分类识别方法[J]. 江苏农业学报, 2020, 36(1):24-31.
[16]YANG K F, GAO S B, LI Y J, et al. Efficient illuminant estimation for color constancy using grey pixels[C]//IEEE. Proceedings of the 2015 IEEE conference on computer vision and pattern recognition. Boston, America:IEEE, 2015: 2254-2263.
[17]LEE S, KWON H, HAN H, et al. A space-variant luminance map based color image enhancement[J]. IEEE Transactions on Consumer Electronics, 2010, 56(4):2636-2643.
[18]李玉华,李天华,牛子孺,等. 基于色饱和度三维几何特征的马铃薯芽眼识别[J]. 农业工程学报, 2018, 34(24):158-164.
[19]李江波,黄文倩,张保华,等. 类球形水果表皮颜色变化校正方法研究[J]. 农业机械学报, 2014, 45(4): 226-230.
[20]FU Q, JUNG C, XU K. Retinex-based perceptual contrast enhancement in images using luminance adaptation [J]. IEEE Access, 2018, 6: 61277-61286.
[21]白元明,孔令成,张志华,等. 基于改进OTSU算法的快速作物图像分割[J]. 江苏农业科学,2019,47(24):231-236.

相似文献/References:

[1]化春键,张爱榕,陈莹.基于改进的Retinex算法的草坪杂草识别[J].江苏农业学报,2021,(06):1417.[doi:doi:10.3969/j.issn.1000-4440.2021.05.008]
 HUA Chun-jian,ZHANG Ai-rong,CHEN Ying.Lawn weed recognition based on improved Retinex algorithm[J].,2021,(06):1417.[doi:doi:10.3969/j.issn.1000-4440.2021.05.008]
[2]冯国富,刘亚蕊,陈明,等.基于DCP算法增强暗纹东方鲀胚胎图像[J].江苏农业学报,2021,(06):1493.[doi:doi:10.3969/j.issn.1000-4440.2021.05.018]
 FENG Guo-fu,LIU Ya-rui,CHEN Ming,et al.Image enhancement of Takifugu obscurus embryos based on DCP algorithm[J].,2021,(06):1493.[doi:doi:10.3969/j.issn.1000-4440.2021.05.018]

备注/Memo

备注/Memo:
收稿日期:2020-09-08基金项目:国家重点研发计划项目(2018YFD0700304);安徽省重点研发计划项目(202004a06020016);安徽省科技重大专项(18030701204)作者简介:廖娟(1986-),女,安徽安庆人,博士,讲师,硕士生导师,主要从事计算机视觉技术研究。(E-mail)liaojuan308@163.com通讯作者:朱德泉,(E-mail)zhudequan@ahau.edu.cn
更新日期/Last Update: 2021-01-15