参考文献/References:
[1]汪天虹,吴静,邹玉霞. 瑞氏木霉分子生物学研究进展[J]. 菌物系统,2000, 19(1): 147-152.
[2]韩长志,许僖. 黏绿木霉Gv29-8的碳水化合物活性酶类蛋白预测及遗传关系分析[J]. 华中农业大学学报, 2017, 36(5):39-44.
[3]FOREMAN P K,BROWN D,DANKMEYER L, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei[J]. J Biol Chem,2003, 278 (34):31988-31997.
[4]韩长志,祝友朋,许僖. 全基因组预测里氏木霉QM6a的碳水化合物活性酶类蛋白[J]. 西南农业学报, 2018, 31(4):705-710.
[5]HOWELL C R. Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens[J]. Phytopathology,1987, 77 (7):992-994.
[6]BAEK J M, HOWELL C R, KENERLEY C M.The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani[J]. Current Genetics, 1999, 35 (1):41-50.
[7]孟庆山. 里氏木霉纤维素酶基因转录调控因子鉴定及纤维素酶高产菌株构建[D]. 大连: 大连理工大学, 2019.
[8]郝珍珍. 里氏木霉中CRISPR-Cas9基因组编辑及木糖调控基因表达方法的建立[D]. 北京: 中国农业科学院, 2019.
[9]陈雨蒙. 锰离子和N,N-二甲基甲酰胺诱导里氏木霉高产纤维素酶的机制研究[D]. 上海: 华东理工大学, 2019.
[10]郑宗明,顾晓波,俞海青,等. 非核糖体肽合成酶主要结构域的研究进展[J]. 中国抗生素杂志,2005(2):120-124.
[11]马晨琛,李正鹏,戴青青,等. 苹果树腐烂病菌非核糖体多肽合成酶基因VmNRPS12的功能[J]. 微生物学报,2016, 56(8):1273-1281.
[12]JOHNSON R D, JOHNSON L, ITOH Y, et al. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity[J]. Molecular Plant-microbe Interactions,2000, 13 (7):742-753.
[13]PANACCIONE D G, SCOTT-CRAIG J S, POCARD J A, et al. A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum on maize[J]. Proceedings of the National Academy of Sciences of the United States of America,1992, 89 (14):6590-6594.
[14]LEE B N, KROKEN S, CHOU D Y, et al. Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress[J]. Eukaryotic Cell,2005, 4 (3):545-555.
[15]OIDE S, MOEDER W, KRASNOFF S, et al. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes[J]. The Plant cell,2006, 18 (10):2836-2853.
[16]CHEN L H, LIN C H, CHUNG K R. A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata[J]. Molecular Plant Pathology,2013, 14 (5):497-505.
[17]孙红云. 苹果树腐烂病菌NRPS基因VmG10的功能研究[D]. 杨凌: 西北农林科技大学, 2019.
[18]原晓龙,赵能,陈剑,等. 硬枝树花中非核糖体多肽合成酶NRPS基因的克隆与鉴定[J]. 基因组学与应用生物学,2016, 35 (10):2834-2841.
[19]KHALDI N,SEIFUDDIN F T,TURNER G, et al. SMURF: Genomic mapping of fungal secondary metabolite clusters[J]. Fungal Genet Biol, 2010, 47 (9):736-741.
[20]BLIN K, WOLF T, CHEVRETTE M G, et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification[J]. Nucleic Acids Res,2017, 45 (W1):36-41.
[21]GASTEIGER E,GATTIKER A, HOOGLAND C, et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research,2003, 31 (13):3784-3788.
[22]LAWRENCE A K, STEFANS M, CHRISTOPHER M Y, et al. The Phyre2 web portal for protein modeling, prediction and analysis[J]. Nat Protocols,2015, 10 (6): 845-858.
[23]OLOF E, SREN B, GUNNAR V H, et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nature Protocols,2007, 2 (4):953-971.
[24]IVICA L, TOBIAS D, PEER B. SMART 7: recent updates to the protein domain annotation resource[J]. Nucleic Acids Research,2012, 40 (D1):302-305.
[25]韩长志,王娟. 基于全基因组序列预测里氏木霉QM6a的分泌蛋白[J]. 华中农业大学学报,2017, 36 (2):28-32.
[26]韩长志. 基于全基因组测序的粘绿木霉Gv29-8中分泌蛋白预测[J]. 河南师范大学学报(自然科学版), 2016, 44 (6):145-148.