[1]胡燕,邹建,袁晓晴.响应面法优化脱乙酰魔芋葡甘聚糖/κ-卡拉胶可食性膜的制备工艺[J].江苏农业学报,2020,(04):1041-1048.[doi:doi:10.3969/j.issn.1000-4440.2020.04.033]
 HU Yan,ZOU Jian,YUAN Xiao-qing.Optimization of preparation technology of deacetylated konjac glucomannan/κ-carrageenan edible films by response surface methodology[J].,2020,(04):1041-1048.[doi:doi:10.3969/j.issn.1000-4440.2020.04.033]
点击复制

响应面法优化脱乙酰魔芋葡甘聚糖/κ-卡拉胶可食性膜的制备工艺()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
1041-1048
栏目:
加工贮藏·质量安全
出版日期:
2020-08-31

文章信息/Info

Title:
Optimization of preparation technology of deacetylated konjac glucomannan/κ-carrageenan edible films by response surface methodology
作者:
胡燕邹建袁晓晴
(河南牧业经济学院,河南郑州450046)
Author(s):
HU YanZOU JianYUAN Xiao-qing
(Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China)
关键词:
脱乙酰魔芋葡甘聚糖(Da-KGM)κ-卡拉胶可食性膜响应面法
Keywords:
deacetylated konjac glucomannan (Da-KGM)κ-carrageenanedible filmresponse surface methodology
分类号:
TS206.4
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.033
文献标志码:
A
摘要:
以脱乙酰魔芋葡甘聚糖(Da-KGM)和κ-卡拉胶为主要原料,甘油为主要辅料,制备复合可食性膜,并通过响应面法对其主要制备工艺参数进行了优化。通过单因素试验考察魔芋葡甘聚糖(KGM)的脱乙酰度、Da-KGM与κ-卡拉胶比例(质量比)、Da-KGM添加量、甘油添加量、加热温度和加热时间对复合可食性膜断裂伸长率和水蒸气透过系数的影响。在单因素试验基础上,利用Box-Behnken试验设计,对Da-KGM添加量、甘油添加量、加热温度和加热时间等主要参数进行了优化。结果表明,最适制备参数为Da-KGM添加量1.01%、甘油添加量0.43%、加热温度68.72 ℃、加热时间28.78 min,在该条件下制备的可食性膜的断裂伸长率为25.48%,水蒸气透过系数为4.19 g·mm/(m2·h·kPa)。该研究可以为后续的产品开发提供参考。
Abstract:
Edible films were prepared mainly with deacetylated konjac glucomannan (Da-KGM), κ-carrageenan and glycerol. The preparation technology was optimized by response surface methodology (RSM). Effects of the deacetylation degree of KGM, the ratio of Da-KGM to κ-carrageenan, Da-KGM content, glycerol content, heating temperature and heating time on elongation and water vapor permeability were investigated. On the basis of single factor experiments, the Da-KGM content, glycerol content, heating temperature and heating time were optimized by Box-Behnken design. The results showed that the optimum preparation parameters were Da-KGM content of 1.01%, glycerol content of 0.43%, heating temperature of 68.72 ℃ and heating time of 28.78 min. Under these conditions, the elongation was 25.48%, and the water vapor permeability was 4.19 g·mm/(m2·h·kPa). The results of this study can provide reference for subsequent product development.

参考文献/References:

[1]CHUA M, CHAN K, HOCKING T J, et al. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K.Koch[J]. Carbohydrate Polymers, 2012, 87(3): 2202-2210.
[2]HERRANZ B, TOVAR C A, SOLO-DE-ZALDIVAR B, et al. Effect of alkalis on konjac glucomannan gels for use as potential gelling agents in restructured seafood products[J]. Food Hydrocolloids, 2012, 27(1): 145-153.
[3]IGLESIAS-OTERO M A, BORDERIAS J. Use of konjac glucomannan as additive to reinforce the gels from low-quality squid surimi[J]. Journal of Food Engineering, 2010, 101(3): 281-288.
[4]LI B, XIE B J, KENNEDY J F. Studies on the molecular chain morphology of konjac glucomannan [J]. Carbohydrate Polymers, 2011, 86(3): 1421.
[5]CHENG L H, ABD K A, NORZIAH M H, et al. Modification of the microstructural and physical properties of konjac glucomannan-based films by alkali and sodium carboxymethylcellulose[J]. Food Research International, 2002, 35(9): 829-836.
[6]PAN Z, MENG J, WANG Y. Effects of alkalis on deacetylation of konjac glucomannan in mechano-chemical treatment[J]. Particuology, 2011, 9: 265-269.
[7]PAN Z D, HE K, WANG Y M. Deacetylation of konjac glucomannan by mechanochemical treatment[J]. Journal of Applied Polymer Science, 2008, 108(3): 1566-1573.
[8]COVIELLO T, MATRICARDI P, MARIANECCI C, et al. Polysaccharide hydrogels for modified release formulations[J]. Journal of Controlled Release, 2007, 119: 5-24.
[9]JIAO G, YU G, ZHANG J, et al. Chemical structures and bioactivities of sulfated polysaccharides from marine algae[J]. Marine Drugs, 2011, 9: 196-223.
[10]CAMPO V L, KAWANO D F, SILVA D B, et al. Carrageenans: biological properties, chemical modifications and structural analysis-a review[J]. Carbohydrate Polymers, 2009, 77: 167-180.
[11]CHEN H M, YAN X J, WANG F, et al. Assessment of the oxidative cellular toxicity of a κ-carrageenan oxidative degradation product towards Caco-2 cells[J]. Food Research International, 2010, 43: 2390-2401.
[12]REDDY K, MOHAN G K, SATLA S, et al. Natural polysaccharides: versatile excipients for controlled drug delivery systems[J]. Asian Journal of Pharmaceutical Sciences, 2011, 6(6): 275-286.
[13]WEI Y, WANG Y. The rheological properties of κ-Carrageenan-Konjac gum mixed gel[J]. Advanced Materials Research, 2013, 4: 1652-1655.
[14]BRENNER T, WANG Z, ACHAYUTHAKAN P, et al. Rheology and synergy of κ-carrageenan/locust bean gum/konjac glucomannan gels[J]. Carbohydrate Polymers, 2013, 98:754-760.
[15]HU Y, TIAN J, ZOU J, et al. Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and κ-carrageenan blends[J]. International Journal of Biological Macromolecules, 2019, 123 : 1165-1171.
[16]张莉琼,李新芳,刘晓艳,等. 魔芋葡甘聚糖-卡拉胶可食性包装复合膜性能影响研究[J]. 食品工业科技, 2013, 34(16): 114-116.
[17]黄艳,张媛,徐小青,等. 魔芋葡甘聚糖可食膜配方优化[J]. 食品工业科技, 2016,37(4): 330-336.
[18]CHEN J, LI J, LI B. Identification of molecular driving forces involved in the gelation of konjac glucomannan: Effect of degree of deacetylation on hydrophobic association[J]. Carbohydrate Polymers, 2011, 86(2): 865-871.
[19]ZHANG T, XUE Y, LI Z, et al. Effects of deacetylation of konjac glucomannan on Alaska Pollock surimi gels subjected to high-temperature (120 ℃) treatment[J]. Food Hydrocolloids, 2015, 43: 125-131.
[20]HUANG Y C, CHU H W, HUANG C C, et al. Alkali-treated konjac glucomannan film as a novel wound dressing[J]. Carbohydrate Polymers, 2015, 117: 778-787.
[21]吴贺君,胡彪,董知韵,等. 可食性西瓜皮基膜制备与性能分析[J]. 食品与生物技术学报, 2018,34(10): 1091-1098.
[22]尹璐,彭勇,于华宇,等. 中心组合实验优化葛根淀粉-壳聚糖复合膜性能[J]. 食品科学, 2013, 34(8): 6-11.
[23]ARMITAGE E G, RUPEREZ F J, BARBAS C. Metabolomics of diet-related diseases using mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2013, 52: 61-73.
[24]WIJESEKARA I, PANGESTUTI R, KIM S K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae[J]. Carbohydrate Polymers, 2011, 84: 14-21.
[25]DU X, LI J, CHEN J, et al. Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan[J]. Food Research International, 2012, 46(1): 270-278.

备注/Memo

备注/Memo:
收稿日期:2020-01-16基金项目:河南省高等学校重点科研项目(19B550002);河南牧业经济学院科研创新团队建设项目(2018KYTD17)作者简介:胡燕(1982-),女,湖北黄冈人,博士,讲师,研究方向为农产品加工及保鲜。(E-mail)anny1982love@163.com
更新日期/Last Update: 2020-09-08