参考文献/References:
[1]贺纪正,张丽梅. 氨氧化微生物生态学与氮循环研究进展[J].生态学报,2009,29(1):406-415.
[2]KNNEKE M,BERNHARD A E,DE LA TORRE J R,et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature, 2005, 437(7058):543-546.
[3]COSTA E, PREZ J, KREFT J U. Why is metabolic labour divided in nitrification?[J] Trends in Microbiology, 2006, 14(5): 213-219.
[4]DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583): 504-509.
[5]VAN KESSEL M A H J,SPETH D R,ALBERTSEN M, et al.Complete nitrification by a single microorganism[J]. Nature,2015, 528(7583): 555-559.
[6]PALOMO A, JANE F S, GLAY A, et al. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp[J]. ISME Journal, 2016, 10(11): 2569-2581.
[7]王梅,王智慧,石孝均,等. 长期不同施肥量对全程氨氧化细菌丰度的影响[J]. 环境科学, 2018, 39(10): 4727-4734.
[8]曹彦强,王智慧,莫永亮,等. 施肥和淹水管理对水稻土氨氧化微生物数量的影响[J]. 土壤学报, 2019, 56(4): 1004-1011.
[9]PROSSER J I, NICOL G W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation[J]. Trends in Microbiology, 2012, 20(11): 523-531.
[10]SUZUKI I, DULAR U, KWOK S C. Ammonia and ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts[J]. Journal of Bacteriology, 1974, 120(1): 556-558.
[11]MARTENS-HABBENA W,BERUBE P M,URAKAWA H,et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7266): 976-979.
[12]LU L, HAN W, ZHANG J, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. ISME Journal, 2012, 6(10): 1978-1984.
[13]JIA Z J, CONRAD R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671.
[14]XIA W, ZHANG C, ZENG X, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. ISME Journal, 2011, 5(7): 1226-1236.
[15]KITS K D, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671): 269-272.
[16]YU C, HOU L, ZHENG Y, et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments[J]. Applied Microbiological Biotechnology, 2018, 102: 9363-9377.
[17]WANG M, HUANG G, ZHAO Z, et al. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants[J]. Bioresource Technology, 2018, 270: 580-587.
[18]BEMAN J M, FRANCIS C A. Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hyper-nutrified subtropical estuary: Bahía del Tóbari, Mexico[J]. Applied and Environmental Microbiology, 2006, 72(12): 7767-7777.
[19]PROSSER J I. Autotrophic nitrification in bacteria. Advances in microbial physiology[J]. Advances in Microbial Physiology,1990,30(1):125-181.
[20]DE BOER W, KOWALCHUK G A. Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology and Biochemistry, 2001, 33(7): 853-866.
[21]DAHLGREN R A. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock[J]. Nature, 1994, 368(1): 838-841.
[22]PALOMO A, PEDERSEN A G,FOWLER S J, et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira[J]. The ISME Journal, 2018, 12: 1779-1793.
[23]WANG J, WANG J L, RHODES G, et al. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling[J]. Science of the Total Environment, 2019, 668:224-233.
[24]林黎,崔军,陈学萍,等. 滩涂围垦和土地利用对土壤微生物群落的影响[J]. 生态学报, 2014, 34(4): 899-906.
[25]PJEVAC P, SCHAUBERGER C, POGHOSYAN L, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8: 1508-1514.
相似文献/References:
[1]周炜,张岳芳,朱普平,等.种植制度对长江下游稻田温室气体排放的影响[J].江苏农业学报,2017,(02):340.[doi:doi:10.3969/j.issn.1000-4440.2017.02.016]
ZHOU Wei,ZHANG Yue-fang,ZHU Pu-ping,et al.Effects of different cropping patterns on greenhouse gases emissions from rice fields in the lower reaches of Yangtze River[J].,2017,(03):340.[doi:doi:10.3969/j.issn.1000-4440.2017.02.016]
[2]张慧,马连杰,杭晓宁,等.不同轮作模式下稻田土壤细菌和真菌多样性变化[J].江苏农业学报,2018,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
ZHANG Hui,MA Lian-jie,HANG Xiao-ning,et al.Changes of soil bacterial and fungal diversity in paddy soils under different rotation patterns[J].,2018,(03):804.[doi:doi:10.3969/j.issn.1000-4440.2018.04.013]
[3]徐广春,顾中言,徐德进,等.2012-2016年稻田农药科学减量试验分析[J].江苏农业学报,2018,(05):1005.[doi:doi:10.3969/j.issn.1000-4440.2018.05.006]
XU Guang-chun,GU Zhong-yan,XU De-jin,et al.Analysis on the scientific pesticide reduction trial in paddy field during 2012-2016[J].,2018,(03):1005.[doi:doi:10.3969/j.issn.1000-4440.2018.05.006]
[4]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(03):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
[5]胡中泽,衣政伟,王安,等.紫云英不同时期还田部分替代化肥对氨挥发及水稻产量的影响[J].江苏农业学报,2021,(05):1160.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
HU Zhong-ze,YI Zheng-wei,WANG An,et al.Effects of different incorporation stages of Chinese milk vetch residue on ammonia volatilization loss and yield of rice[J].,2021,(03):1160.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
[6]纪洪亭,周炜,郭智,等.猪粪有机肥替代化学氮肥对水稻农学效应、安全效应及经济效益影响的综合评价[J].江苏农业学报,2021,(06):1451.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
JI Hong-ting,ZHOU Wei,GUO Zhi,et al.Comprehensive evaluation for the influence of substituting fertilizer by pig manure on agronomic effect, safety effect and economic benefit of rice[J].,2021,(03):1451.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]