[1]尹萌,孙寓姣,李洁,等.生物质废弃物发酵过程中菌群多样性及秸秆降解菌的筛选[J].江苏农业学报,2020,(03):591-598.[doi:doi:10.3969/j.issn.1000-4440.2020.03.009]
 YIN Meng,SUN Yu-jiao,LI Jie,et al.Microbial diversity and screening of straw-degrading bacteria in different fermentation processes of biomass waste[J].,2020,(03):591-598.[doi:doi:10.3969/j.issn.1000-4440.2020.03.009]
点击复制

生物质废弃物发酵过程中菌群多样性及秸秆降解菌的筛选()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
591-598
栏目:
耕作栽培·资源环境
出版日期:
2020-06-30

文章信息/Info

Title:
Microbial diversity and screening of straw-degrading bacteria in different fermentation processes of biomass waste
作者:
尹萌孙寓姣李洁徐上崴赵娟娟
(北京师范大学水科学研究院,北京100875)
Author(s):
YIN MengSUN Yu-jiaoLI JieXU Shang-weiZHAO Juan-juan
(College of Water Science, Beijing Normal University, Beijing 100875, China)
关键词:
微生物群落联合发酵秸秆降解生物质废弃物
Keywords:
microbial communitycombined fermentationstraw degradationbiomass waste
分类号:
S141.4
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.009
文献标志码:
A
摘要:
利用16s rRNA高通量测序技术研究了生物质废弃物玉米秸秆、畜禽粪便、活性污泥混合物在不同氧含量条件下发酵过程中微生物的群落特征变化,同时采用选择培养基筛选对秸秆具有降解能力的菌株,以寻找能在秸秆还田中具有较大应用潜力的菌种资源。高通量测序结果表明:在秸秆、畜禽粪便、污泥共发酵体系中,厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)占据绝对优势,不同氧含量堆肥条件下发酵体系营养结构、微生物群落结构不同,氧含量较低的条件更有利于秸秆的降解。通过纯培养方式得到的目的菌株对玉米秸秆降解效率最高可达28.9%,初步被确定为厚壁菌门中芽孢杆菌属(Bacillus),进一步证明结合高通量测序结果快速选择生物质废弃物发酵体系中秸秆降解菌具有可行性。
Abstract:
The 16s rRNA high-throughput sequencing technology was used to study the characteristics of microbial communities during the co-fermentation of corn straw, livestock manure and sludge under different oxygen conditions. In order to find the strains with great potential in the return of straw to the field a selection medium was used to quickly screen the strains which could degrade straw. The results of high-throughput sequencing showed that Firmicutes, Bacteroidetes and Proteobacteria occupied absolute advantages in the co-fermentation system of straw, livestock manure and sludge. The nutrient structure and microbial community structure in fermentation system were different under different compositing conditions, and the condition of low oxygen content was more conducive to the degradation of straw. The highest degradation efficiency of target strain obtained by pure culture method was 28.9%, and the strain could be initially identified as Bacillus in the Firmicutes phylum. These results proved that it was feasible to select straw-degrading bacteria in co-fermentation system by combining high-throughput sequencing results.

参考文献/References:

[1]朱晓春,杜晓丹,贾向春,等.规模化奶牛牧场粪污资源化利用标准化研究[J].中国标准化,2019(21):179-183.
[2]KIM M, YANG Y, MORIKAWA-SAKURA M S, et al. Hydrogen production by anaerobic co-digestion of rice straw and sewage sludge[J]. International Journal of Hydrogen Energy,2012, 37(4): 3142-3149.
[3]WANG X, YANG G, FENG Y, et al. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw[J]. Bioresource Technology, 2012, 120: 78-83.
[4]ZHAO J, GUI L, WANG Q, et al. Aged refuse enhances anaerobic digestion of waste activated sludge[J]. Water Research, 2017, 123: 724-733.
[5]XU Q, LI X, DING R, et al. Understanding and mitigating the toxicity of cadmium to the anaerobic fermentation of waste activated sludge[J]. Water Research,2017, 124: 269-279.
[6]魏源送,李承强,樊耀波,等. 采用不同调理剂的污泥堆肥稳定度研究[J]. 中国给水排水,2002(2): 5-9.
[7]MENG L, LI W, ZHANG S, et al. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw[J]. Bioresource Technology,2017, 226: 39-45.
[8]杜洋. 玉米秸秆低温甲烷发酵高效菌系的筛选及发酵效果研究[D]. 哈尔滨:东北农业大学, 2016.
[9]LI Y, ZHANG R, LIU G, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates[J]. Bioresource Technology, 2013, 149: 565-569.
[10]MENG Q, YANG W, MEN M, et al. Microbial community succession and response to environmental variables during cow manure and corn straw composting[J]. Frontiers in Microbiology, 2019, 10. doi: 10.3389/fmicb.2019.00529.
[11]CHEN Y, XIN L, LIU J, et al. Changes in bacterial community of soil induced by long-term straw returning[J]. Scientia Agricola, 2017, 74(5): 349-356.
[12]VRANOVA V, REJSEK K, SKENE K R, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose: A review[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(2): 175-199.
[13]HIJAZI O, MUNRO S, ZERHUSEN B, et al. Review of life cycle assessment for biogas production in Europe[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1291-1300.
[14]STRUBER H, BHLIGEN F, KLEINSTEUBER S, et al. Improved anaerobic fermentation of wheat straw by alkaline pre-treatment and addition of alkali-tolerant microorganisms[J]. Bioengineering, 2015, 2(2): 66-93.
[15]贾洋洋. 利用宏基因组方法分析堆肥生境中微生物区系的变化[D]. 济南:山东大学, 2012.
[16]ZHENG X, SU Y, LI X, et al. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production[J]. Environmental Science & Technology,2013, 47(9): 4262-4268.
[17]胡容平,邓香洁,龚国淑,等. 成都市郊区土壤芽孢杆菌的解磷、解钾潜力[J]. 四川农业大学学报,2008,26(2):167-169.
[18]YI J, DONG B, JIN J, et al. Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: performance and microbial characteristics analysis[J]. PLoS One,2014, 9(7): e102548.
[19]YUE Z, CHEN R, YANG F, et al. Effects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance[J]. Bioresource Technology, 2013, 128: 65-71.
[20]唐涛涛,李江,杨爱江,等. 秸秆类型及配比变化对污泥厌氧消化中微生物群落的影响[J]. 化工进展, 2020,39(2): 667-678.
[21]于静,谷洁,王小娟,等. 微生物菌剂对鸡粪堆肥过程中氨气排放和微生物群落的影响[J]. 西北农业学报, 2019, 28(11): 1861-1870.
[22]令利军,何楠,白雪,等. 基于高通量测序的玉米秸秆自然发酵过程中细菌菌群结构特征[J]. 兰州大学学报(自然科学版), 2017, 53(4): 526-533.
[23]王春芳,马诗淳,黄艳,等. 降解水稻秸秆的复合菌系及其微生物群落结构演替[J]. 微生物学报, 2016, 56(12): 1856-1868.
[24]匡小珠,邱艳玲,师晓爽,等. 一株新属水平厌氧发酵性细菌的分离与鉴定[J]. 安徽农业科学, 2010,38(17): 8840-8843.
[25]TSUCHIDATE T, TATENO T, OKAI N, et al. Glutamate production from β-glucan using endoglucanase-secreting Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 895-901.
[26]康志超. 耐低温木质纤维素降解菌群的构建及其应用研究[D]. 长春:中国科学院大学(中国科学院东北地理与农业生态研究所), 2019.
[27]任海伟,孙安琪,任军乐,等. 添加白菜尾菜和甲酸对干玉米秸秆贮存品质的影响[J]. 草业学报. 2019, 28(8): 61-71.
[28]王加友,赵彭年,杨德玉,等. 一株纤维素分解菌的筛选、鉴定及其对玉米秸秆的降解效果[J]. 生物技术进展, 2018, 8(2): 132-139.
[29]李红亚,李术娜,王树香,等. 产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J]. 中国农业科学,2014, 47(2): 324-333.
[30]ALAIN K, QUERELLOU J. Cultivating the uncultured: limits, advances and future challenges[J]. Extremophiles, 2009, 13(4): 583-594.
[31]ROSSELLO M R, AMAN R. The species concept for prokaryotes[J].FEMS Microbiology Reviews,2001, 25(1):39-67.

相似文献/References:

[1]董媛媛,范立民,胡庚东,等.生物絮团的饵料替代能力及水体环境微生物群落多样性分析[J].江苏农业学报,2019,(04):880.[doi:doi:10.3969/j.issn.1000-4440.2019.04.019]
 DONG Yuan yuan,FAN Li min,HU Geng dong,et al.The substitute ability of bioflocs and the analysis of microbial community diversity in the ponds environment[J].,2019,(03):880.[doi:doi:10.3969/j.issn.1000-4440.2019.04.019]
[2]孟佳丽,吴绍军,沈虹,等.不同药剂处理对西瓜连作土壤的影响[J].江苏农业学报,2021,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
 MENG Jia-li,WU Shao-jun,SHEN Hong,et al.Effects of different chemical treatments on continuous cropping soil of watermelon[J].,2021,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2021.03.013]
[3]曹茜斐,谢军祥,常尧枫,等.生物质炭对氮转化过程及其功能微生物影响研究进展[J].江苏农业学报,2022,38(02):558.[doi:doi:10.3969/j.issn.1000-4440.2022.02.032]
 CAO Qian-fei,XIE Jun-xiang,CHANG Yao-feng,et al.Research progress on the effects of biochar on nitrogen conversion process and its functional microorganisms[J].,2022,38(03):558.[doi:doi:10.3969/j.issn.1000-4440.2022.02.032]
[4]许伟佳,陈林,李敬王,等.秸秆还田配施不同激发剂对潮土有机碳和微生物群落的影响[J].江苏农业学报,2023,(02):383.[doi:doi:10.3969/j.issn.1000-4440.2023.02.011]
 XU Wei-jia,CHEN Lin,LI Jing-wang,et al.Effects of straw returning combined with different activators on organic carbon and microbial community in fluvo-aquic soil[J].,2023,(03):383.[doi:doi:10.3969/j.issn.1000-4440.2023.02.011]
[5]王瑞飞,孔盈利,魏艺璇,等.菌剂对鸡粪-生物炭堆肥理化性质和微生物群落结构的影响[J].江苏农业学报,2023,(04):966.[doi:doi:10.3969/j.issn.1000-4440.2023.04.006]
 WANG Rui-fei,KONG Ying-li,WEI Yi-xuan,et al.Effects of microbial agents on physicochemical properties and microbial community structure of chicken manure-biochar compost[J].,2023,(03):966.[doi:doi:10.3969/j.issn.1000-4440.2023.04.006]
[6]郑昕雨,陈鹏,韩金吉,等.冻融循环对土壤团聚体与微生物特性影响研究进展[J].江苏农业学报,2023,(04):1080.[doi:doi:10.3969/j.issn.1000-4440.2023.04.018]
 ZHENG Xin-yu,CHEN Peng,HAN Jin-ji,et al.Effects of freeze-thaw cycles on soil aggregates and microbial properties: a review[J].,2023,(03):1080.[doi:doi:10.3969/j.issn.1000-4440.2023.04.018]
[7]徐筋燕,何晓兰,邵明灿,等.不同连作年限栝楼根际土壤微生物群落多样性分析[J].江苏农业学报,2023,(05):1140.[doi:doi:10.3969/j.issn.1000-4440.2023.05.006]
 XU Jin-yan,HE Xiao-lan,SHAO Ming-can,et al.Analysis of microbial community diversity in rhizosphere soil of continuous cropping Trichosanthes kirilowii[J].,2023,(03):1140.[doi:doi:10.3969/j.issn.1000-4440.2023.05.006]
[8]于雪娇,胡冰洁,袁宏,等.氨基酸增值尿素对水稻生长和根系分泌物的影响[J].江苏农业学报,2023,(09):1834.[doi:doi:10.3969/j.issn.1000-4440.2023.09.005]
 YU Xue-jiao,HU Bing-jie,YUAN Hong,et al.Effects of amino acid value-added urea on rice growth and root exudates[J].,2023,(03):1834.[doi:doi:10.3969/j.issn.1000-4440.2023.09.005]

备注/Memo

备注/Memo:
收稿日期:2019-12-22基金项目:国家自然科学基金项目(51678054)作者简介:尹萌(1996-),女,山东菏泽人,硕士研究生,研究方向为环境污染治理、分子微生态学。(E-mail)201821470041@mail.bnu.edu.cn通讯作者:孙寓姣,(E-mail)sunyujiao@bnu.edu.cn
更新日期/Last Update: 2020-07-14