[1]曲晓玲,毛伟兵,孙玉霞,等.配施泥沙对黏质盐土盐分吸附与淋洗的影响[J].江苏农业学报,2020,(03):599-605.[doi:doi:10.3969/j.issn.1000-4440.2020.03.010]
 QU Xiao-ling,MAO Wei-bing,SUN Yu-xia,et al.Effects of sediment distribution on salt adsorption and leaching in saline clay soil[J].,2020,(03):599-605.[doi:doi:10.3969/j.issn.1000-4440.2020.03.010]
点击复制

配施泥沙对黏质盐土盐分吸附与淋洗的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年03期
页码:
599-605
栏目:
耕作栽培·资源环境
出版日期:
2020-06-30

文章信息/Info

Title:
Effects of sediment distribution on salt adsorption and leaching in saline clay soil
作者:
曲晓玲毛伟兵孙玉霞孙雪蓉
(山东农业大学水利土木工程学院,山东泰安271018)
Author(s):
QU Xiao-lingMAO Wei-bingSUN Yu-xiaSUN Xue-rong
(College of Hydraulic and Civil Engineering, Shandong Agricultural University, Tai′an 271018, China)
关键词:
黏质盐土引黄泥沙盐分吸附盐分淋洗
Keywords:
saline clay soilYellow River sedimentsalt adsorptionsalt-leaching
分类号:
S156.4+2
DOI:
doi:10.3969/j.issn.1000-4440.2020.03.010
文献标志码:
A
摘要:
为研究引黄泥沙对滨海黏质盐土盐分吸附与淋洗的影响机理,利用黄河三角洲引黄灌区亟需处理的大量淤积泥沙,对滨海黏质盐土进行室内和田间配施泥沙试验。室内试验采用土柱模拟的方法,主要研究配施泥沙对土壤水盐吸附和盐分淋洗的影响与变化规律,确定适宜的田间试验配施泥沙量范围。结果表明:(1)配施泥沙可降低黏质盐土对盐分和水分的吸附能力,土壤含盐量和饱和含水量均与配施泥沙量存在极显著负相关。(2)随配施泥沙量的增加,土壤饱和导水率呈现指数递增,但是土壤淋洗脱盐效率并不随饱和导水率的升高而增加,而在配施泥沙量12.9 kg/m2至139.4 kg/m2内保持较高水平。(3)配施泥沙能有效抑制黏质盐土表层含盐量,但表层含水量降低明显,当田间配施泥沙量为35 kg/m2时,与未配施泥沙对照(CK)相比,2016年、2017年表层土壤含盐量分别降低了26.5%、26.6%(P<0.05)。(4)配施泥沙后小麦产量均显著提高,2016年、2017年小麦产量最高分别比CK提高了64.4%、29.3%(P<0.05)。因此,黏质盐土配施泥沙不仅能有效抑制土壤对盐分的吸附,而且可提高土壤盐分淋洗效率,增加冬小麦产量。
Abstract:
In order to study the influence mechanism of Yellow River sediment on salt adsorption and leaching of coastal saline clay soil, laboratory and field experiments were carried out by using a large number of silt urgently needed to be treated in Yellow River Delta irrigation area. In laboratory experiment, the effects and variation of sediment distribution on soil water and salt adsorption and salt leaching were studied by soil column simulation, and the suitable range of sediment distribution was determined for field experiment. The results showed that the sediment distribution could reduce the adsorption capacity of saline clay soil to salt and water. There was a significant negative correlation between soil salt content and saturated water content and sediment distribution. With the increase of sediment content, the soil saturated hydraulic conductivity increased exponentially. The desalting efficiency of soil elution did not increase with the increase of saturated hydraulic conductivity, but maintained a high level when the sediment content ranged from 12.9 kg/m2 to 139.4 kg/m2. Sediment application could effectively inhibit the salt content in the top layer of the soil, but the soil surface water content was significantly reduced. When the sediment content was 35 kg/m2, compared with the control (CK), the salt content in the top layer of the soil in 2016 and 2017 was reduced by 26.5% and 26.6% respectively (P<0.05). The wheat yield after sand-dressing was significantly increased. Moreover, the highest wheat yield in 2016 and 2017 was 64.4% and 29.3% higher than that of control, respectively (P<0.05). Therefore, the sediment distribution in saline clay soil can not only effectively inhibit the adsorption of the soil to the salt, but also improve the salt-leaching efficiency and increase the yield of the winter wheat.

参考文献/References:

[1]MAO W B, KANG S Z, WAN Y S, et al. Yellow river sediment as a soil amendment for amelioration of saline land in the Yellow River Delta[J]. Land Degradation & Development, 2016, 27(6): 1595-1602.
[2]WANG Z R, ZHAO G X, GAO M X, et al. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China[J]. Environmental Monitoring and Assessment, 2017, 189(2):1-12.
[3]郄亚栋,蒋腊梅,吕光辉,等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J].生态环境学报,2018,27(11):2000-2010.
[4]韩剑宏,刘泽霞,张连科,等. 生物炭和环保酵素对盐碱化土壤特性的影响[J].生态环境学报,2019,28(5):1029-1036.
[5]王洁,校亮,毕冬雪,等. 风化煤改变黄河三角洲盐渍化土壤溶液组分的过程[J].土壤学报,2018,55(6):1367-1376.
[6]武兰芳,柏林川,欧阳竹,等. 山东省环渤海平原区粮食产出潜力与技术途径分析[J].中国生态农业学报,2014,22(6):682-689.
[7]王乃江,高佩玲,赵连东,等. 咸淡水分配比例对盐碱土壤水分入渗特征与脱盐效果的影响[J].水土保持学报,2016,30(6):100-105.
[8]李卓,冯浩,吴普特,等. 砂粒含量对土壤水分蓄持能力影响模拟试验研究[J].水土保持学报,2009,23(3):204-208.
[9]WANG X P, YANG J S, LIU G M, et al. Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution [J]. Agricultural Water Management, 2015, 149: 44-54.
[10]GONG C, MA L, CHENG H, et al. Characterization of the particle size fraction associated heavy metals in tropical arable soils from Hainan Island[J]. Journal of Geochemical Exploration, 2014,139 (4): 109-114.
[11]RAM L C, MASTO R E. Fly ash for soil amelioration: A review on the influence of ash blending with inorganic and organic amendments(Review)[J]. Earth-Science Reviews, 2014,128(128):52-74.
[12]CONDE S I, LOBO C M, BELTRN-HERNNDEZ I R. Remediation of saline soils by a two-step process: Washing and amendment with sludge[J]. Geoderma, 2015, 247:140-150.
[13]LAL R, SHUKLA M K. Principles of soil physics[M]. New York, Academic: Marcel Dekker, 2004:12-256.
[14]RODRGUEZ-LADO L, LADO M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain) [J]. Geoderma, 2017, 287: 147-156.
[15]MAO W B, WAN Y S, SUN Y X, et al. Applying dredged sediment improves soil salinity environment and winter wheat production [J]. Communications in Soil Science and Plant Analysis, 2018, 49(14): 1787-1794.
[16]LAL R. World soils and global issues [J]. Soil and Tillage Research, 2007, 97(1): 1-4.
[17]AJMONE-MARSAN F, BIASIOLI M, KRALJ T, et al. Metals in particle-size fractions of the soils of five European cities[J]. Environmental Pollution, 2008, 152(1): 73-81.
[18]SUN K, RO KYOUNG S, GUO M X, et al. Sorption of bisphenol A, 17a-ethinyl estradiol and phenanthrene by biochars obtained by thermal and hydrothermal methods [J]. Bioresource Technology, 2011,102(10):5757-5763.
[19]QIN S P, HU C S, HE X H, et al. Soil organic carbon, nutrients and relevant enzyme activities in particle-size fractions under conservational versus traditional agricultural management[J]. Applied Soil Ecology, 2010, 45(3): 152-159.
[20]SHWETHA P, VARIJA K. Soil water retention curve from saturated hydraulic conductivity for sandy loam and loamy sand textured soils[J]. Aquatic Procedia, 2015,4(4): 1142-1149.
[21]郑乾坤,毛伟兵,孙玉霞,等. 颗粒组成变化对黏质盐土含盐量和小麦生长的影响[J].中国农学通报,2019,35(11):88-94.
[22]贾利梅,毛伟兵,孙玉霞,等. 不同改良材料对黏质盐土物理性状和棉花产量的影响[J].中国农学通报,2017,33(13):81-87.
[23]LALITA B, MANNA M C, BATRA L. Dehydrogenase activity and microbial biomass carbon in salt-affected soils of semiarid and arid regions[J]. Arid Soil Research and Rehabilitation, 1997, 11(3): 295-303.
[24]杜金龙,靳孟贵,欧阳正平,等. 焉耆盆地土壤盐分剖面特征及其与土壤颗粒组成的关系[J].地球科学,2008,33(1):131-136.
[25]夏江宝,赵西梅,赵自国,等.不同潜水埋深下土壤水盐运移特征及其交互效应[J].农业工程学报,2015,31(15):93-100.
[26]田霄鸿,南雄雄,赵晓进,等. 施用硫磺和 ALA 对碱性盐土上作物生长发育及土壤性质的影响[J].生态环境,2008,17(6): 2407-2412.
[27]于兵,门明新,刘霈珈,等. 有机酸对重金属污染土壤的淋洗效果[J]. 江苏农业科学,2018,46(13):284-287.
[28]YAZDANPANAH N, MAHMOODABADI M. Reclamation of calcareous saline-sodic soil using different amendments: time changes of soluble cations in leachate [J]. Arabian Journal of Geosciences, 2013, 6(7): 2519-2528.
[29]MCNEILL J R, WINIWARTER V. Breaking the sod: Humankind, history, and soil (Review) [J]. Science, 2004, 304(5677): 1627-1629.

备注/Memo

备注/Memo:
收稿日期:2019-08-03基金项目:山东省重大科技创新项目(2017CXGC0306)作者简介:曲晓玲(1995-),女,山东荣成人,硕士研究生,主要从事农业水土工程土壤改良方面的研究。(E-mail)qxldyx1995@163.com通讯作者:毛伟兵,(E-mail)maoweibing316@126.com
更新日期/Last Update: 2020-07-14