参考文献/References:
[1]申欢, 林建, 李欲轲, 等. 日本蛇根草CHI基因原核表达载体的构建及重组蛋白的纯化 [J]. 贵州师范大学学报(自然科学版), 2018, 36(4): 36-39.
[2]TARIQ P, JIU S, FAEZEH F. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants [J].Journal of Plant Biochem Physiol, 2017, 5(2): 1-9.
[3]阳姝婷. 干旱胁迫对甜樱桃生理及果实品质的影响 [D]. 四川: 四川农业大学, 2016.
[4]JIHYE K, WON J L, TIEN T V, et al. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. [J]. Plant Cell Reports, 2017, 36: 1215-1224.
[5]MIHAELA T, ANA M O, GABRIELA R. Anthocyanins: naturally occuring fruit pigments with functional properties [J]. The Annals of the University Dunrea de Jos of Galati Fascicle VI-Food Technology, 2015, 39(1): 9-24.
[6]VAZHAPPILLY C G, GRAHAM D H P, VASANTHA R. Plant flavonoids in cancer chemoprevention: role in genome stability [J]. Journal of Nutritional Biochemistry, 2016, 45:1-14.
[7]HUANG W Y, WU H, LI D J, et al. Protective effects of blueberry anthocyanins against H2O2-induced oxidative injury in human retinal pigment epithelial cells [J]. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1638-1648.
[8]ZHOU L P, WANG H, YI J J, et al. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’ fruit on human hepatocellular carcinoma: in vitro and in vivo study [J]. Biomedicine & Pharmacotherapy, 2018, 104: 520-529.
[9]MAZEWSKI C, LIANG K, GONGZALEZ D M E. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays [J]. Food Chemistry, 2018, 242: 378.
[10]SANTOS B C, MATEUS N, DE F V. Anthocyanins. plantpigments and beyond [J]. Journal of Agricultural and Food Chemistry, 2014, 62(29): 6879-6884.
[11]POMBO M A, MARTINEZ G A, CIVELO P M. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation [J]. Plant Science, 2011, 181(2): 111-118.
[12]张雪, 王荔, 瞿飞, 等. 引种红梨花青苷合成及相关因子变化 [J]. 西南农业学报, 2017, 30(5): 1162-1167.
[13]NORIMOTO S, TOSHIO A, SHUSEI S. A Cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus [J]. Plant Physilogy, 2003, 131(3): 941-951.
[14]MIN L, YU T C, SI R Y, et al. Isolation of CHS gene from Brunfelsia acuminata flowers and its regulation in anthocyanin biosysthesis [J]. Molecules,2016,22(1):44.
[15]GUO J, ZHOU W, LU Z, et al. Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato [J]. Plant Molecular Biology Reporter,2015,33(5): 1451-1463.
[16]王蕊, 郑健, 李彦慧, 等. 华北紫丁香黄烷酮-3-羟化酶基因克隆及表达分析 [J]. 分子植物育种, 2018, 16(12): 3863-3869.
[17]康美玲, 冯凯, 段希, 等. 水芹类黄酮3′-羟化酶基因的克隆与表达特性分析 [J]. 植物生理学报, 2018, 54(2): 282-290
[18]LIU F, YANG Y J, GAO J W, et al. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation [J]. PLoS ONE, 2018, 13(1): e0191406.
[19]KENJIRO K, RINTARO S I, WATARU T, et al. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity [J]. BMC Plant Biology, 2017, 17(1): 239.
[20]CHRISTIAN H G, SILVIJA M, DARIA N, et al. Great cause-small effect: undeclared genetically engineered orange petunias harbor an inefficient dihydroflavonol 4-reductase [J]. Frontiers in Plant Science, 2018, 9: 149.
[21]WEISS D. Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals [J]. Physiologia Plantarum, 2000, 110(2): 152-157.
[22]SHI S G, YANG M, ZHANG M, et al. Genome-wide transcriptome analysis of genes involved in flavonoid biosynthesis between red and white strains of Magnolia sprengeri pamp [J]. BMC Genomics, 2014, 15(1): 706.
[23]韦青. 3GT基因转化马铃薯的研究 [D]. 南京: 南京农业大学, 2010.
[24]HU M, LU Z, GUO J, et al. Cloning and characterization of the cDNA and promoter of UDP-glucose:flavonoid 3-O-glucosyltransferase gene from a purple-fleshed sweet potato [J]. South African Journal of Botany, 2016, 106: 211-220.
[25]ARACELI C O, MA DE LOURDES P H, MA ELENA P H, et al. Chemical studies of anthocyanins: a review [J]. Food Chemistry, 2009, 113: 859-871.
[26]KARIN S, JUN I N, MAMI Y, et al. Recent advances in the biosynthesis and accumulation of anthocyanins [J]. Natural Product Reports, 2003, 2(3):288-303.
[27]TARIQ P, JIU S, FAEZEH F, et al. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants [J]. Journal of Plant Biochemistry & Physiology, 2017, 5:2.
[28]WICZKOWSKI W, SZAWARA-N D, TOPOLSKA J. Red cabbage anthocyanins: profile, isolation, identification, and antioxidant activity [J]. Food Research International, 2013, 51(1): 303-309.
[29]OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. Plant Journal, 2010, 54(4): 733-749.
[30]GRISEBACH H. Chapter 3-Biosynthesis of Anthocyanins[M]. Pittsburgh: Academic Press,1982.
[31]HUNTER J J, VOLSCHENK C G. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level [J]. Journal of the Science of Food and Agriculture, 2017,98(7):2689-2704.
[32]刘清玮, 赵权. 山桃稠李果实成熟过程花色昔含量的变化 [J]. 北方园艺, 2017 (11): 40-43.
[33]WU X X, GONG Q H, NI X P, et al. UFGT: the key enzyme associated with the petals variegation in japanese apricot [J]. Frontiers in Plant Science, 2017, 8: 108.
[34]张玲, 徐宗大, 汤腾飞, 等. 紫枝玫瑰(Rosa rugosa Zi zhi)开花过程花青素相关化合物及代谢途径分析 [J]. 中国农业科学, 2015, 48(13): 235-236.
[35]HUGHES N M, NEUFELD H S, BURKEY K O. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata [J]. New Phytologist, 2006, 168(3): 575-587.
[36]马文瑶, 程大伟, 顾红, 等. 脱落酸(ABA)促进果实着色研究进展 [J]. 果树学报, 2018, 35(8): 1016-1026.
[37]贾海锋, 赵密珍, 王庆莲, 等. 生长素和脱落酸在草莓果实发育过程中的作用 [J]. 江苏农业科学, 2016, 44(11): 173-176.
[38]牛亮亮. 赤霉素影响紫心甘薯花色素苷合成机制的初步研究 [D]. 广州: 华南师范大学, 2014.
[39]曾凤, 郭子娟, 李雯. 赤霉素对台农芒果保鲜效果的研究 [J]. 广东农业科学, 2016, 43(5): 112-117.
[40]TU Y H, LIU F, GUO D D, et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation [J]. BMC Plant Biology, 2016, 16(1): 132.
[41]马文婷. 脱落酸、乙烯利和芸苔素内酯对蛇龙珠葡萄果实品质及果皮花色苷的影响 [D]. 银川: 宁夏大学, 2015.
[42]杨暖. 北美豆梨叶色变化及生理特性研究 [D]. 泰安: 山东农业大学, 2016.
[43]刘健晖, 王志新, 曹丽敏, 等. 糖和植物生长调节剂对万寿菊花色素苷合成的影响 [J]. 衡阳师范学院学报, 2016, 37(3): 128-131.
[44]贾真真, 王春英, 胡超, 等. 不同光质对番茄幼苗花色素苷积累的影响 [J]. 黑龙江农业科学, 2018 (1): 66-67.
[45]ZHANG Y T, JIANG L Y, LI Y L, et al. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria×ananassa) [J]. Molecules, 2018, 23(4):820.
[46]刘炜. 遮阴处理对美国红栌叶片色素含量的影响 [J]. 山西林业科技, 2017, 46(2): 37-39.
[47]VELU S, OLEG F, SONIA D, et al.Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance [J]. Postharvest Biology and Technology, 2016, 111: 132-139.
[48]YANG L, ZHANG D, QIU S, et al. Effects of environmental factors on seedling growth and anthocyanin content in Betula ‘Royal Frost’ leaves [J]. Journal of Forestry Research, 2017 (6): 45-53.
[49]汪越, 易慧琳, 刘楠, 等. 光强和施肥对杜鹃红山茶成花品质的影响 [J]. 生态科学, 2016, 35(6): 41-45.
[50]ZHU H, LI X, ZHAI W, et al. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino) [J]. PLoS ONE, 2017, 12(6):e0179305.
[51]赵夏陆. 遮阴对地被菊花色苷和类黄酮糖基转移酶基因CmUFGT表达的影响 [D]. 晋中:山西农业大学, 2015.
[52]靳慧慧. 过剩光能对四季秋海棠叶片花色素苷合成的影响及调控机理 [D]. 郑州: 河南农业大学, 2016.
[53]余意, 刘文科. 弱光条件下光质和光周期对水培生菜生长与品质的影响 [J]. 中国农业气象, 2015, 36(6): 739-745.
[54]段瑛. 夜间低温对富士苹果果皮花色苷代谢的调控机制研究 [D]. 杨凌: 西北农林科技大学, 2016.
[55]牛俊萍. 高温对红美丽李果实花色苷代谢的影响 [D]. 杨凌: 西北农林科技大学, 2015.
[56]李云, 孟凡来, 赵昶灵, 等. 云南文山辣椒花色苷和渗透调节物含量对PEG-6000模拟干旱胁迫的响应 [J]. 农业科学与技术, 2016, 17(6): 1295-1300.
[57]沈露露, 胡春梅, 许玉超, 等. 水分胁迫对紫色不结球白菜花色苷合成及相关基因表达的影响 [J]. 西北农业学报, 2016, 25(4): 588-594.
[58]MARKUS K, GEZA H. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening [J]. American Journal of Enology & Viticulture, 1998, 49(3): 341-349.
[59]SUN X, JIA X, HUO L, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple [J]. Plant Cell & Environment, 2018, 41(2): 469.
[60]ZHANG X Y, WEI J Y, HUANG Y F, et al. Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls [J]. Frontiers in Plant Science, 2018, 9:1020.
[61]RACHEL G, SYLVIE E, VIOLETA C T, et al. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region [J]. Journal of Experimental Botany, 2002, 53(373): 1397-1409.
[62]PENG H, YANG T, WHITAKER B D, et al. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis [J]. BMC Plant Biology, 2016, 16(1):197.
[63]TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development [J]. Crop Research, 2013, 27(2): 207-212.