[1]徐僡,郑远静,高方平,等.花色苷的生物合成及其影响因素研究进展[J].江苏农业学报,2019,(05):1246-1253.[doi:doi:10.3969/j.issn.1000-4440.2019.05.035]
 XU Hui,ZHENG Yuan-jing,GAO Fang-ping,et al.Advances in the biosynthesis and influencing factors of anthocyanins[J].,2019,(05):1246-1253.[doi:doi:10.3969/j.issn.1000-4440.2019.05.035]
点击复制

花色苷的生物合成及其影响因素研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年05期
页码:
1246-1253
栏目:
综述
出版日期:
2019-10-31

文章信息/Info

Title:
Advances in the biosynthesis and influencing factors of anthocyanins
作者:
徐僡1郑远静1高方平1李欲轲1孙威12
(1.贵州师范大学生命科学学院植物生理与发育调控重点实验室,贵州贵阳550025;2.西南喀斯特山地生物多样性保护重点实验室,贵州贵阳550025)
Author(s):
XU Hui1ZHENG Yuan-jing1GAO Fang-ping1LI Yu-ke1SUN Wei12
(1.Key Laboratory of Plant Physiology and Development Regulation, College of Life Science, Guizhou Normal University, Guiyang 550025, China;2.Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountain Area of Southwest of China, Guiyang 550025, China)
关键词:
花色苷生物合成内在因素外在因素
Keywords:
anthocyaninbiosynthesisinternal factorexternal factor
分类号:
Q946.83
DOI:
doi:10.3969/j.issn.1000-4440.2019.05.035
文献标志码:
A
摘要:
花色苷是一种天然的水溶性色素,常分布于植物的花、果实、茎、叶细胞中,能赋予植物丰富的色彩。花色苷对植物具有重要的生理生态功能,能帮助植物适应和抵御不良环境,对人类还具有疾病预防和保健作用。研究结果证明,花色苷的生物合成至少需要苯丙氨酸解氨酶(PAL)、查尔酮合成酶(CHS)、查尔酮异构酶(CHI)、黄烷酮-3-羟基化酶(F3H)、类黄酮-3′-羟化酶(F3′H)、类黄酮-3′,5′-羟化酶(F3′5′H)、二氢黄酮醇-4-还原酶(DFR)、花色素合成酶(ANS)、类黄酮3-O-葡萄糖基转移酶(3GT)等酶共同参与,同时受内在因素与外在因素的共同调控,本文重点从花色苷生物合成及影响因素两方面进行综合评述,为花色苷的生物合成及开发和利用研究提供基础。
Abstract:
Anthocyanin is a kind of natural water-soluble pigment, which is usually distributed in the cells of flowers, fruits, stems and leaves, and can endow abundant colors to plants. It has been reported that anthocyanin possesses important physiological and ecological functions and can help plants adapt to and resist adverse environment. In addition, anthocyanin has the function of disease prevention and health promotion for human beings. Previous studies demonstrated that phenylalanine ammonialyase(PAL), chalcone synthase(CHS), chalcone isomerase(CHI), flavanone-3-hydroxylase(F3H), flavonoid-3′-hydroxylase(F3′H), flavonoid-3′,5′-hydroxylase(F3′5′H), dihydroflavonol-4-reductase(DFR), anthocyanin synthase(ANS), flavonoid-3-O-glucosyltransferase(3GT) and other enzymes were required for anthocyanin biosynthesis at least, meanwhile, this biosynthesis was also regulated by both internal and external factors. In this paper, the biosynthesis of anthocyanin and the influening factors were reviewed in order to provide the basis for the study of the anthocyanin biosynthesis and utilization.

参考文献/References:

[1]申欢, 林建, 李欲轲, 等. 日本蛇根草CHI基因原核表达载体的构建及重组蛋白的纯化 [J]. 贵州师范大学学报(自然科学版), 2018, 36(4): 36-39.
[2]TARIQ P, JIU S, FAEZEH F. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants [J].Journal of Plant Biochem Physiol, 2017, 5(2): 1-9.
[3]阳姝婷. 干旱胁迫对甜樱桃生理及果实品质的影响 [D]. 四川: 四川农业大学, 2016.
[4]JIHYE K, WON J L, TIEN T V, et al. High accumulation of anthocyanins via the ectopic expression of AtDFR confers significant salt stress tolerance in Brassica napus L. [J]. Plant Cell Reports, 2017, 36: 1215-1224.
[5]MIHAELA T, ANA M O, GABRIELA R. Anthocyanins: naturally occuring fruit pigments with functional properties [J]. The Annals of the University Dunrea de Jos of Galati Fascicle VI-Food Technology, 2015, 39(1): 9-24.
[6]VAZHAPPILLY C G, GRAHAM D H P, VASANTHA R. Plant flavonoids in cancer chemoprevention: role in genome stability [J]. Journal of Nutritional Biochemistry, 2016, 45:1-14.
[7]HUANG W Y, WU H, LI D J, et al. Protective effects of blueberry anthocyanins against H2O2-induced oxidative injury in human retinal pigment epithelial cells [J]. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1638-1648.
[8]ZHOU L P, WANG H, YI J J, et al. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’ fruit on human hepatocellular carcinoma: in vitro and in vivo study [J]. Biomedicine & Pharmacotherapy, 2018, 104: 520-529.
[9]MAZEWSKI C, LIANG K, GONGZALEZ D M E. Comparison of the effect of chemical composition of anthocyanin-rich plant extracts on colon cancer cell proliferation and their potential mechanism of action using in vitro, in silico, and biochemical assays [J]. Food Chemistry, 2018, 242: 378.
[10]SANTOS B C, MATEUS N, DE F V. Anthocyanins. plantpigments and beyond [J]. Journal of Agricultural and Food Chemistry, 2014, 62(29): 6879-6884.
[11]POMBO M A, MARTINEZ G A, CIVELO P M. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation [J]. Plant Science, 2011, 181(2): 111-118.
[12]张雪, 王荔, 瞿飞, 等. 引种红梨花青苷合成及相关因子变化 [J]. 西南农业学报, 2017, 30(5): 1162-1167.
[13]NORIMOTO S, TOSHIO A, SHUSEI S. A Cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus [J]. Plant Physilogy, 2003, 131(3): 941-951.
[14]MIN L, YU T C, SI R Y, et al. Isolation of CHS gene from Brunfelsia acuminata flowers and its regulation in anthocyanin biosysthesis [J]. Molecules,2016,22(1):44.
[15]GUO J, ZHOU W, LU Z, et al. Isolation and functional analysis of chalcone isomerase gene from purple-fleshed sweet potato [J]. Plant Molecular Biology Reporter,2015,33(5): 1451-1463.
[16]王蕊, 郑健, 李彦慧, 等. 华北紫丁香黄烷酮-3-羟化酶基因克隆及表达分析 [J]. 分子植物育种, 2018, 16(12): 3863-3869.
[17]康美玲, 冯凯, 段希, 等. 水芹类黄酮3′-羟化酶基因的克隆与表达特性分析 [J]. 植物生理学报, 2018, 54(2): 282-290
[18]LIU F, YANG Y J, GAO J W, et al. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation [J]. PLoS ONE, 2018, 13(1): e0191406.
[19]KENJIRO K, RINTARO S I, WATARU T, et al. A new buckwheat dihydroflavonol 4-reductase (DFR), with a unique substrate binding structure, has altered substrate specificity [J]. BMC Plant Biology, 2017, 17(1): 239.
[20]CHRISTIAN H G, SILVIJA M, DARIA N, et al. Great cause-small effect: undeclared genetically engineered orange petunias harbor an inefficient dihydroflavonol 4-reductase [J]. Frontiers in Plant Science, 2018, 9: 149.
[21]WEISS D. Regulation of flower pigmentation and growth: multiple signaling pathways control anthocyanin synthesis in expanding petals [J]. Physiologia Plantarum, 2000, 110(2): 152-157.
[22]SHI S G, YANG M, ZHANG M, et al. Genome-wide transcriptome analysis of genes involved in flavonoid biosynthesis between red and white strains of Magnolia sprengeri pamp [J]. BMC Genomics, 2014, 15(1): 706.
[23]韦青. 3GT基因转化马铃薯的研究 [D]. 南京: 南京农业大学, 2010.
[24]HU M, LU Z, GUO J, et al. Cloning and characterization of the cDNA and promoter of UDP-glucose:flavonoid 3-O-glucosyltransferase gene from a purple-fleshed sweet potato [J]. South African Journal of Botany, 2016, 106: 211-220.
[25]ARACELI C O, MA DE LOURDES P H, MA ELENA P H, et al. Chemical studies of anthocyanins: a review [J]. Food Chemistry, 2009, 113: 859-871.
[26]KARIN S, JUN I N, MAMI Y, et al. Recent advances in the biosynthesis and accumulation of anthocyanins [J]. Natural Product Reports, 2003, 2(3):288-303.
[27]TARIQ P, JIU S, FAEZEH F, et al. Naturally occurring anthocyanin, structure, functions and biosynthetic pathway in fruit plants [J]. Journal of Plant Biochemistry & Physiology, 2017, 5:2.
[28]WICZKOWSKI W, SZAWARA-N D, TOPOLSKA J. Red cabbage anthocyanins: profile, isolation, identification, and antioxidant activity [J]. Food Research International, 2013, 51(1): 303-309.
[29]OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids [J]. Plant Journal, 2010, 54(4): 733-749.
[30]GRISEBACH H. Chapter 3-Biosynthesis of Anthocyanins[M]. Pittsburgh: Academic Press,1982.
[31]HUNTER J J, VOLSCHENK C G. Chemical composition and sensory properties of non-wooded and wooded Shiraz (Vitis vinifera L.) wine as affected by vineyard row orientation and grape ripeness level [J]. Journal of the Science of Food and Agriculture, 2017,98(7):2689-2704.
[32]刘清玮, 赵权. 山桃稠李果实成熟过程花色昔含量的变化 [J]. 北方园艺, 2017 (11): 40-43.
[33]WU X X, GONG Q H, NI X P, et al. UFGT: the key enzyme associated with the petals variegation in japanese apricot [J]. Frontiers in Plant Science, 2017, 8: 108.
[34]张玲, 徐宗大, 汤腾飞, 等. 紫枝玫瑰(Rosa rugosa Zi zhi)开花过程花青素相关化合物及代谢途径分析 [J]. 中国农业科学, 2015, 48(13): 235-236.
[35]HUGHES N M, NEUFELD H S, BURKEY K O. Functional role of anthocyanins in high-light winter leaves of the evergreen herb Galax urceolata [J]. New Phytologist, 2006, 168(3): 575-587.
[36]马文瑶, 程大伟, 顾红, 等. 脱落酸(ABA)促进果实着色研究进展 [J]. 果树学报, 2018, 35(8): 1016-1026.
[37]贾海锋, 赵密珍, 王庆莲, 等. 生长素和脱落酸在草莓果实发育过程中的作用 [J]. 江苏农业科学, 2016, 44(11): 173-176.
[38]牛亮亮. 赤霉素影响紫心甘薯花色素苷合成机制的初步研究 [D]. 广州: 华南师范大学, 2014.
[39]曾凤, 郭子娟, 李雯. 赤霉素对台农芒果保鲜效果的研究 [J]. 广东农业科学, 2016, 43(5): 112-117.
[40]TU Y H, LIU F, GUO D D, et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation [J]. BMC Plant Biology, 2016, 16(1): 132.
[41]马文婷. 脱落酸、乙烯利和芸苔素内酯对蛇龙珠葡萄果实品质及果皮花色苷的影响 [D]. 银川: 宁夏大学, 2015.
[42]杨暖. 北美豆梨叶色变化及生理特性研究 [D]. 泰安: 山东农业大学, 2016.
[43]刘健晖, 王志新, 曹丽敏, 等. 糖和植物生长调节剂对万寿菊花色素苷合成的影响 [J]. 衡阳师范学院学报, 2016, 37(3): 128-131.
[44]贾真真, 王春英, 胡超, 等. 不同光质对番茄幼苗花色素苷积累的影响 [J]. 黑龙江农业科学, 2018 (1): 66-67.
[45]ZHANG Y T, JIANG L Y, LI Y L, et al. Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria×ananassa) [J]. Molecules, 2018, 23(4):820.
[46]刘炜. 遮阴处理对美国红栌叶片色素含量的影响 [J]. 山西林业科技, 2017, 46(2): 37-39.
[47]VELU S, OLEG F, SONIA D, et al.Increased anthocyanin and flavonoids in mango fruit peel are associated with cold and pathogen resistance [J]. Postharvest Biology and Technology, 2016, 111: 132-139.
[48]YANG L, ZHANG D, QIU S, et al. Effects of environmental factors on seedling growth and anthocyanin content in Betula ‘Royal Frost’ leaves [J]. Journal of Forestry Research, 2017 (6): 45-53.
[49]汪越, 易慧琳, 刘楠, 等. 光强和施肥对杜鹃红山茶成花品质的影响 [J]. 生态科学, 2016, 35(6): 41-45.
[50]ZHU H, LI X, ZHAI W, et al. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino) [J]. PLoS ONE, 2017, 12(6):e0179305.
[51]赵夏陆. 遮阴对地被菊花色苷和类黄酮糖基转移酶基因CmUFGT表达的影响 [D]. 晋中:山西农业大学, 2015.
[52]靳慧慧. 过剩光能对四季秋海棠叶片花色素苷合成的影响及调控机理 [D]. 郑州: 河南农业大学, 2016.
[53]余意, 刘文科. 弱光条件下光质和光周期对水培生菜生长与品质的影响 [J]. 中国农业气象, 2015, 36(6): 739-745.
[54]段瑛. 夜间低温对富士苹果果皮花色苷代谢的调控机制研究 [D]. 杨凌: 西北农林科技大学, 2016.
[55]牛俊萍. 高温对红美丽李果实花色苷代谢的影响 [D]. 杨凌: 西北农林科技大学, 2015.
[56]李云, 孟凡来, 赵昶灵, 等. 云南文山辣椒花色苷和渗透调节物含量对PEG-6000模拟干旱胁迫的响应 [J]. 农业科学与技术, 2016, 17(6): 1295-1300.
[57]沈露露, 胡春梅, 许玉超, 等. 水分胁迫对紫色不结球白菜花色苷合成及相关基因表达的影响 [J]. 西北农业学报, 2016, 25(4): 588-594.
[58]MARKUS K, GEZA H. Interaction of nitrogen availability during bloom and light intensity during veraison. II. Effects on anthocyanin and phenolic development during grape ripening [J]. American Journal of Enology & Viticulture, 1998, 49(3): 341-349.
[59]SUN X, JIA X, HUO L, et al. MdATG18a overexpression improves tolerance to nitrogen deficiency and regulates anthocyanin accumulation through increased autophagy in transgenic apple [J]. Plant Cell & Environment, 2018, 41(2): 469.
[60]ZHANG X Y, WEI J Y, HUANG Y F, et al. Increased cytosolic calcium contributes to hydrogen-rich water-promoted anthocyanin biosynthesis under UV-A irradiation in radish sprouts hypocotyls [J]. Frontiers in Plant Science, 2018, 9:1020.
[61]RACHEL G, SYLVIE E, VIOLETA C T, et al. Expression of the grape dihydroflavonol reductase gene and analysis of its promoter region [J]. Journal of Experimental Botany, 2002, 53(373): 1397-1409.
[62]PENG H, YANG T, WHITAKER B D, et al. Calcium/calmodulin alleviates substrate inhibition in a strawberry UDP-glucosyltransferase involved in fruit anthocyanin biosynthesis [J]. BMC Plant Biology, 2016, 16(1):197.
[63]TANG K, ZHU W W, ZHOU W X, et al. Research progress on effects of soil pH on plant growth and development [J]. Crop Research, 2013, 27(2): 207-212.

相似文献/References:

[1]田鹏,苏艳丽,康保珊,等.两个红梨品种花色苷合成相关基因及转录因子MYB10 表达模式分析[J].江苏农业学报,2015,(01):166.[doi:10.3969/j.issn.1000-4440.2015.01.026]
 TIAN peng,SU Yan-li,KANG Bao-shan,et al.Analyses of expression patterns of transcription factor MYB10 and anthocyanin synthesis genes in two red skin pear varieties[J].,2015,(05):166.[doi:10.3969/j.issn.1000-4440.2015.01.026]
[2]宿子文,蔡志翔,孙朦,等.植物中绿原酸生物合成研究进展[J].江苏农业学报,2023,(06):1414.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
 SU Zi-wen,CAI Zhi-xiang,SUN Meng,et al.Research progress on biosynthesis of chlorogenic acid in plants[J].,2023,(05):1414.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
[3]庞文倩,刘春菊,李大婧,等.热压加工过程中紫玉米花色苷的热降解动力学及色泽变化[J].江苏农业学报,2023,(07):1583.[doi:doi:10.3969/j.issn.1000-4440.2023.07.015]
 PANG Wen-qian,LIU Chun-ju,LI Da-jing,et al.Thermal degradation kinetics of anthocyanins and color change in purple corn during hot pressing process[J].,2023,(05):1583.[doi:doi:10.3969/j.issn.1000-4440.2023.07.015]
[4]郭梦鸽,秦孝天,陈瑞丹.6个朱砂梅品种花色苷合成结构基因及转录因子编码基因的表达模式分析[J].江苏农业学报,2024,(02):367.[doi:doi:10.3969/j.issn.1000-4440.2024.02.019]
 GUO Meng-ge,QIN Xiao-tian,CHEN Rui-dan.Analysis of the expression pattern of structural genes and transcription factors encoding genes related to the anthocyanin synthesis in six cultivars of Prunus mume Cinnabar Purple Group[J].,2024,(05):367.[doi:doi:10.3969/j.issn.1000-4440.2024.02.019]
[5]高磊,李慧,郑焕,等.果树中花色苷的生物合成及其调控机制研究进展[J].江苏农业学报,2022,38(01):258.[doi:doi:10.3969/j.issn.1000-4440.2022.01.031]
 GAO Lei,LI Hui,ZHENG Huan,et al.Advances in biosynthesis and regulation mechanism of anthocyanins in fruit trees[J].,2022,38(05):258.[doi:doi:10.3969/j.issn.1000-4440.2022.01.031]

备注/Memo

备注/Memo:
收稿日期:2019-01-01 基金项目:国家自然科学基金项目(31760076); 贵州省教育厅青年科技人才成长项目[黔教合KY字(2017)122]; 贵州省重点实验室建设项目[黔科合计Z字(2011)4005];贵州省联合基金项目[黔科合LH字(2016)7211号、黔科合LH字(2017)7358号] 作者简介:徐僡(1995-),女,苗族,贵州福泉人,硕士研究生,主要从事植物细胞与分子生物学研究。(E-mail)xuhui09@163.com 通讯作者:孙威,(E-mail)sunwei889@163.com
更新日期/Last Update: 2019-11-11