[1]刘海莉,杨蕾蕾,辛苗苗,等.硅对平邑甜茶幼苗干旱胁迫伤害的缓解[J].江苏农业学报,2019,(04):904-910.[doi:doi:10.3969/j.issn.1000-4440.2019.04.022]
 LIU Hai li,YANG Lei lei,XIN Miao miao,et al.Mitigative effect of silicon on drought stressinduced injuries in Malus hupenensis Rhed. Seedling[J].,2019,(04):904-910.[doi:doi:10.3969/j.issn.1000-4440.2019.04.022]
点击复制

硅对平邑甜茶幼苗干旱胁迫伤害的缓解()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年04期
页码:
904-910
栏目:
园艺
出版日期:
2019-08-31

文章信息/Info

Title:
Mitigative effect of silicon on drought stressinduced injuries in Malus hupenensis Rhed. Seedling
作者:
刘海莉1杨蕾蕾1辛苗苗1师雪艳2刘晶莹1
(1.西北农林科技大学生命科学学院/陕西省苹果重点实验室,陕西杨凌712100;2.西北农林科技大学园艺学院/陕西省苹果重点实验室,陕西杨凌712100 )
Author(s):
LIU Haili1YANG Leilei1XIN Miaomiao1SHI Xueyan2LIU Jingying1
(1.College of Life Sciences / Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling 712100,China;2.College of Horticulture / Shaanxi Key Laboratory of Apple, Northwest A&F University, Yangling, Shaanxi 712100,China)
关键词:
硅转运蛋白活性氧叶绿体聚乙二醇
Keywords:
silicon transporterreactive oxygen specieschloroplastpolyethylene glycol
分类号:
S145.9
DOI:
doi:10.3969/j.issn.1000-4440.2019.04.022
文献标志码:
A
摘要:
以15%聚乙二醇(PEG)6000模拟干旱胁迫,水培平邑甜茶(Malus hupenensis Rhed.)幼苗为试验材料,硅酸钠(2 mmol/L Na2SiO3·9H2O)作为硅源,研究硅对苹果幼苗干旱胁迫伤害缓解及促进植株生长的影响。结果显示,在PEG模拟干旱胁迫下,与不施硅相比,施硅处理的平邑甜茶幼苗硅转运蛋白转录水平升高、硅含量升高、生物量提高、叶片相对含水量提高;叶片中H2O2含量、丙二醛含量及相对电渗率维持在较低水平,叶绿体结构较完整且光合作用较强。表明施硅能够通过提高Lsi1基因转录进而提高平邑甜茶幼苗体内硅的含量,缓解干旱胁迫对苹果幼苗的氧化伤害,促进植株的生长。
Abstract:
The study was conducted to determine the effect and mechanism of exogenous silicon (Si) on apple seedling under drought stress. Drought stress imposed by 15% (W/V) polyethylene glycol (PEG) 6000 and Si was supplied as Na2SiO3·9H2O at 2 mmol/L. The results shown Si application increased expression level of silicon transporter gene Lsi1 and silicon content in apple seedling under PEG stress, which was contributing to maintaine H2O2 accumulation, malondialdehyde content and the relative electrolyte leakage at lower levels, and increased photosynthesis by protecting the chloroplast structure. In conclusion, exogenous silicon could increase silicon content in plant by enhance the expression level of Lsi1, and then alleviate oxidative damage of drought stress and improve the growth of apple seedlings.

参考文献/References:

[1]FOYER C H, NOCTOR G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005, 17(7): 1866-1875.
[2]赖金莉,李欣欣,薛磊,等.植物抗旱性研究进展[J].江苏农业科学,2018,46(17):23-27.
[3]ITURBEORMETXE I, ESCUREDO P R, ARRESELGOR C, et al. Oxidative damage in pea plants exposed to water deficit or paraquat[J]. Plant Physiology, 1998, 116(1): 173-181.
[4]YOU J, CHAN Z L. ROS regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Sience, 2015, 6(4): 690-695.
[5]MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9(10): 490-498.
[6]ASADA K. The waterwater cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molcular Biology, 1999, 50(1): 601-639.
[7]FOYER C H, HALLIWELL B. Presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism[J]. Planta, 1976, 133(1): 21-25.
[8]李佳,刘立云,李艳,等. 保水剂对干旱胁迫槟榔幼苗生理特征的影响[J].南方农业学报, 2018,49(1):104-108.
[9]MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants[J]. Trends in Plant Science, 2006, 11(8): 392-397.
[10]SAVVAS D, GIOTIS D, CHATZIEUSTRATIOU E, et al. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections[J]. Enviromental and Eeperimental Botany, 2009, 65(1): 11-17.
[11]GONG H J, CHEN K M. The regulatory role of silicon on water relations, photosynthetic gas exchange and carboxylation activities of wheat leaves in field drought conditions[J]. Acta Physiologiae Plantarum, 2012, 34(4): 1589-1594.
[12]HATTORI T, INANAGA S, ARAKI H, et al. Application of silicon enhanced drought tolerance in Sorghum bicolor [J]. Physiologia Plantarum, 2005, 123(4): 459-466.
[13]SHEN X F, ZHOU Y Y, DUAN L S, et al. Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultravioletB radiation[J]. Journal of Plant Physiology, 2010, 167(15): 1248-1252.
[14]HATTROI T, SONOBE K, INANAGA S, et al. Effects of silicon on photosynthesis of young cucumber seedlings under osmotic stress[J]. Journal of Plant Nutrition, 2008, 31(6): 1046-1058.
[15]LOBATO K A S, LUZ L M, COADTO R C L, et al. Relationship between chlorophyll a and total soluble carbohydrates in pepper submitted to water deficiency[J]. Journal of Animal and Plant Sciences, 2009, 5(2): 515-526.
[16]HELALY M N, ELHOSEIN H, IBRAHIMElSHEERY N, et al. Regulation and physiological role of silicon in alleviating drought stress of mango[J]. Plant Physiology and Biochemistry, 2017, 118: 31-44.
[17]麻云霞,李钢铁,张宏武,等. 外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,34(5):1113-1119.
[18]杨文杰,吴发启,方丽.陕西省渭北黄土高原苹果发展战略研究[J]. 西北农业学报, 2004, 13(3): 158-161.
[19]殷淑燕,黄春长.黄土高原苹果基地土壤干燥化原因及其对策[J]. 干旱区资源与环境, 2005, 19(2): 76-80.
[20]张亚建,武阿锋,刘存寿,等.不同硅肥处理对苹果树硅及其他中微量元素吸收的影响[J]. 西北农业学报, 2013, 22(10): 126-130.
[21]AVESTAN S, NASERI L A, HASSANZADE A, et al. Effects of nanosilicon dioxide application on in vitro proliferation of apple rootstock[J]. Journal of Plant Nutrition, 2016, 39(6): 850-855.
[22]AVESTAN S, NASERI L A, BARKER V A. Evaluation of nanosilicon dioxide and chitosan on tissue culture of apple under agarinduced osmotic stress[J]. Journal of Plant Nutrition, 2017, 40(20): 2797-2807.
[23]范春丽,赵奇. 硅处理对水分胁迫下的苹果幼树生理特征的影响[J]. 北方园艺, 2016 (5): 30-33.
[24]张菂.干旱胁迫及外源施硅对苹果叶片光合机构的影响[D]. 杨凌: 西北农林科技大学, 2013.
[25]孙山,徐秀玉,程来亮,等. 干旱胁迫下硅对平邑甜茶光合功能的影响[J]. 植物生理学报, 2015, 51(12): 2231-2238.
[26]MICHEL B E, KAUFMANN M R. The osmotic potential of polyethylene glycol 6000[J]. Plant physiology, 1979, 51(5): 914-916.
[27]ELLIOT C L, SNYDER G H. Autoclaveinduced digestion for the colorimetric determination of silicon in rice straw[J]. Journal of Agriculture and Food Chemistry, 1991, 39(6): 1118-1119.
[28]BARRS H D, WEATHERLEY P E. A reexamination of the relative turgidity technique for estimating water deficits in leaves[J]. Australian Journal of Biological Sciences, 1962, 15(3): 413-428.
[29]HEATH R L, PACKER L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.
[30]LUTTS S, KINER J M, BOUHARMONT J. NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivar differing in salinity resistance[J]. Annals of Botany, 1996, 78(3): 389-398.
[31]THORDALCHRISTENSEN H, ZHANG Z, WEI Y, et al. Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barleypowdery mildew interaction[J]. Plant Journal, 1997, 11(6): 1187-1194.
[32]王顺才,邹养军,马锋旺.干旱胁迫对3中苹果属植物叶片解剖结构、微型态特征及叶绿体超微结构的影响[J]. 干旱地区农业研究, 2014, 32(3): 15-23.
[33]LIANG Y, NIKOLIC M, BELANGER R, et al. Silicon in Agriculture: from theory to practice[J]. Ed. Springer Netherlands, 2015, 1-4; 209-210.
[34]CHEN W, YAO X Q, CAI K Z, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research, 2011, 142(1): 67-76.
[35]SHI Y, ZHANG Y, YAO H, et al. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress[J]. Plant Physiology & Biochemistry, 2014, 78(3): 27-36.
[36]ZHANG W J, XIE Z C, WANG L, et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment[J]. Journal of Plant Research, 2017, 130(3): 611-624.
[37]JONES L H P, HaANDREC K A. Silica in soils, plants, and animals[J]. Advances in Agronomy, 1967, 19: 104-149.
[38]MA J F, YAMAJI N, MIAANTI N, et al. An efflux transporter of silicon in rice[J]. Nature, 2007, 448(7150): 209-212.
[39]SAHEBI M, HANAFI M M. Screening and expression of a silicon transporter gene (Lsi1) in wildtype Indica Rice cultivars[J]. BioMed Research International, 2017. doi: 10.1155/2017/906412
[40]CHIBA Y, MITANI N, YAMAJI N, et al. HvLsi1 is a silicon inux transporter in barley[J]. The Plant Journal, 2009, 57(5): 810-818.
[41]刘淑侠, 环境条件对黄瓜硅吸收特征的影响[D]. 泰安: 山东农业大学, 2018.
[42]VATANSEVER R, OZYIGIT I I, FILIZ E, et al. Genomewide exploration of silicon(Si) transporter genes, Lsi1 and Lsi2 in plants; insight into Siaccumulation status/capacity of plants[J]. Biometals, 2017, 30(2): 185-200.
[43]YAMAJI N, MA J F. Further characterization of a rice silicon efflux transporter, Lsi2[J]. Soil Science and Plant Nutrition, 2011, 57(2): 259-264.
[44]HOSSEINIi S A, MAILLARD A, HAJIREZAEI M R, et al. Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency[J]. Frontiers in Plant Science, 2017. doi:10.3389/fpls.2017.01359.
[45]OUZOUNIDOU G, GIANNAKOULA A, ILIAS I, et al. Alleviation of drought and salinity stresses on growth, physiology, biochemistry and quality of two Cucumis sativus L. cultivars by Si application[J]. Brazilian Journal of Botany, 2016, 39(2): 531-539.
[46]GUNES A, PILBEAM D J, INAL A, et al. Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress[J]. Journal of Plant Interactions, 2007, 2(2): 105-113.
[47]GUNES A, PILBEAM D J, INAL A, et al. Influence of silicon on sunflower cultivars under drought stress, I: Growth, Antioxidant Mechanisms, and Lipid Peroxidation[J]. Communications in Soil Science and Plant Analysis, 2008, 39(13/14): 1885-1903.
[48]REHEM B C, ALMEIDA A A F, SANTOS I C, et al. Photosynthesis, chloroplast ultrastructure, chemical composition and oxidative stress in Theobroma cacao hybrids with the lethal gene LuteusPa mutant[J]. Photosynthetica, 2011, 49(1): 127-139.

相似文献/References:

[1]施雅青,郑耀通.活性氧在黄孢原毛平革菌产木质素过氧化物酶中的调控机制[J].江苏农业学报,2016,(03):514.[doi:10.3969/j.issn.1000-4440.2016.03.005]
 SHI Ya-qing,ZHENG Yao-tong.Regulation mechanism of reactive oxygen species in the lignin peroxidase production of Phanerochaete chrysosporium[J].,2016,(04):514.[doi:10.3969/j.issn.1000-4440.2016.03.005]
[2]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(04):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[3]蒋正宁,赵仁慧,吴旭江,等.簇毛麦谷胱甘肽硫转移酶基因HvGSTF 的原核表达与酶活性鉴定[J].江苏农业学报,2016,(06):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
 JIANG Zheng-ning,ZHAO Ren-hui,WU Xu-jiang,et al.Prokaryotic expression of a glutathione S-transferase gene HvGSTF from Haynaldia villosa and the enzyme activity[J].,2016,(04):1219.[doi:doi:10.3969/j.issn.1000-4440.2016.06.004]
[4]徐海,宋波,顾宗福,等.植物耐热机理研究进展[J].江苏农业学报,2020,(01):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
 XU Hai,SONG Bo,GU Zong-fu,et al.Advances in heat tolerance mechanisms of plants[J].,2020,(04):243.[doi:doi:10.3969/j.issn.1000-4440.2020.01.034]
[5]倪萌,王娟,王爽,等.克服萝卜自交不亲和性的化学试剂筛选[J].江苏农业学报,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
 NI Meng,WANG Juan,WANG Shuang,et al.Screening of chemical reagents for overcoming the self-incompatibility of radish[J].,2022,38(04):1042.[doi:doi:10.3969/j.issn.1000-4440.2022.04.022]
[6]张铭芳,李卉,韩东洋,等.不同百合种质资源对灰霉病的抗性[J].江苏农业学报,2022,38(04):1078.[doi:doi:10.3969/j.issn.1000-4440.2022.04.026]
 ZHANG Ming-fang,LI Hui,HAN Dong-yang,et al.Resistance of different lily germplasm resources to Botrytis cinerea[J].,2022,38(04):1078.[doi:doi:10.3969/j.issn.1000-4440.2022.04.026]

备注/Memo

备注/Memo:
收稿日期:2018-10-11 基金项目:国家自然科学基金项目(31401839) 作者简介:刘海莉(1992-),女,陕西渭南人,硕士研究生,主要从事果树逆境生物学研究。(E-mail)liuhaili92612@163.com 通讯作者:刘晶莹,(E-mail)jingying8233@163.com
更新日期/Last Update: 2019-08-31