[1]车金庆,王帆,吕继东,等.重叠苹果果实的分离识别方法[J].江苏农业学报,2019,(02):469-475.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
 CHE Jin-qing,WANG Fan,LYU Ji-dong,et al.Separation and recognition method for overlapped apple fruits[J].,2019,(02):469-475.[doi:doi:10.3969/j.issn.1000-4440.2019.02.030]
点击复制

重叠苹果果实的分离识别方法()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年02期
页码:
469-475
栏目:
农业工程
出版日期:
2019-04-30

文章信息/Info

Title:
Separation and recognition method for overlapped apple fruits
作者:
车金庆1王帆2吕继东2马正华2
(1.常州工程职业技术学院智能装备与信息工程学院,江苏常州213000;2.常州大学信息科学与工程学院,江苏常州213164)
Author(s):
CHE Jin-qing1WANG Fan2LYU Ji-dong2MA Zheng-hua2
(1.School of Intelligent Equipment and Information Engineering, Changzhou Vocational Institute of Engineering, Changzhou 213000, China;2.School of Information Science and Engineering, Changzhou University, Changzhou 213164, China)
关键词:
苹果重叠果实目标识别图像处理
Keywords:
appleoverlapped fruitsobject recognitionimage processing
分类号:
TP391.4
DOI:
doi:10.3969/j.issn.1000-4440.2019.02.030
文献标志码:
A
摘要:
针对苹果采摘机器人重叠果实识别误差较大的问题,设计了一种分离识别方法。首先在苹果图像分割获取其二值果实区域的基础上,基于横、纵投影图实现重叠形态果实的判别,而后基于边缘曲线通过SUSAN算法检测果实轮廓上的角点,再通过迭代腐蚀和瓶颈准则挑选重叠果实的分离点,并采用Bresenham算法连接分离点实现重叠果实的分离。提取分离果实边缘曲线的有效轮廓后,通过改进的随机Hough算法拟合果实圆心及半径。最后选择15幅重叠果实区域二值图像,通过不同角点检测计算结果的比较,验证了SUSAN算法相比于其他角点检测方法更为有效;通过改进的随机Hough算法识别11幅图像中的21个果实,其圆心相对误差平均值、半径相对误差平均值和相对偏差平均值分别为6.90%、4.12%和6.07%,比传统Hough算法分别低4.03、2.75、1.14个百分点,说明改进的随机Hough算法得到的拟合圆更接近实际苹果果实区域。
Abstract:
In order to recognize the overlapped apple fruits accurately, a method of separation and recognition of overlapping fruits for apple picking robot was designed. Firstly, on the basis of obtaining the binary image of apple fruit area, the fruit of the overlapping form was distinguished by using the transverse and longitudinal projection, and then the corner points were detected by the SUSAN algorithm based on the fruit edge curve, and then the separation points of the overlapped fruits were selected by the iterative corrosion and bottleneck criteria, and Bresenham algorithm was used to connect separation points to achieve the separation of overlapping fruit. After extracting the effective contour of separating fruit edge curve, the center and radius of fruit were fitted by the improved random Hough algorithm. Finally, 15 binary images of overlapping fruit areas were selected to verify that SUSAN algorithm was more effective than other corner detection methods by comparing the results of different corner detection. The improved random Hough algorithm was used to identify 21 fruits in 11 images. The average values of relative error of the center, the relative deviation of the radius and relative deviations were 6.90%, 4.12% and 6.07% respectively, which were 4.03%, 2.75% and 1.14% lower than those acquired by the traditional Hough algorithm. This indicated that the fitting circle obtained by the improved random Hough algorithm was closer to the actual apple fruit area.

参考文献/References:

[1]宋怀波,张传栋,潘景朋,等. 基于凸壳的重叠苹果目标分割与重建算法[J]. 农业工程学报, 2013, 29(3):163-168.
[2]尹建军,毛罕平,王新忠,等. 不同生长状态下多目标番茄图像的自动分割方法[J]. 农业工程学报, 2006, 22(10):149-153.
[3]谢忠红,姬长英,郭小清,等. 基于凹点搜索的重叠果实定位检测算法研究[J]. 农业机械学报, 2011, 42(12):191-196.
[4]徐越,李盈慧,宋怀波,等. 基于Snake模型与角点检测的双果重叠苹果目标分割方法[J]. 农业工程学报, 2015, 31(1):196-203.
[5]王丹丹,徐越,宋怀波,等. 融合K-means与Ncut算法的无遮挡双重叠苹果目标分割与重建[J]. 农业工程学报, 2015, 31(10):227-234.
[6]李立君,阳涵疆. 基于改进凸壳理论的遮挡油茶果定位检测算法[J]. 农业机械学报, 2016, 47(12):285-292.
[7]罗陆锋,邹湘军,王成琳,等. 基于轮廓分析的双串叠贴葡萄目标识别方法[J]. 农业机械学报, 2017, 48(6):15-22.
[8]马正华,申根荣,吕继东. 基于极限腐蚀的重叠苹果果实分割方法[J]. 江苏农业学报, 2017,33(6):1372-1378.
[9]王帆,吕继东,申根荣,等. 基于CLAHE和开闭运算的绿色苹果图像分割[J]. 计算机测量与控制, 2017, 25(2):141-145.
[10]田光兆,姬长英,王海青,等. 基于MATLAB的若干苹果边缘检测方法及其特性的对比研究[J]. 科学技术与工程, 2010, 10(16): 3873-3877.
[11]刘坤,吕晓琪,谷宇,等. 快速数字影像重建的2维/3维医学图像配准[J]. 中国图象图形学报, 2016, 21(1):69-77.
[12]王鑫,胡洋洋,杨慧中. 基于迭代腐蚀的粘连细胞图像分割研究[J]. 南京理工大学学报,2016, 40(3): 286-289.
[13]丁幼春,王书茂. 基于RHT的多圆检测改进算法[J]. 中国农业大学学报, 2008, 13(4): 121-125.
[14]冯养杰,林小竹. 基于改进Hough变换的指针式仪表自动识别方法研究[J]. 北京印刷学院学报, 2015,23(4):62-66.

相似文献/References:

[1]张丽颖,冯新新,高晶晶,等.根际浇灌ALA 溶液对苹果叶片生理特性与果实品质的影响[J].江苏农业学报,2015,(01):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
 ZHANG Li-ying,FENG Xin-xin,GAO Jing-jing,et al.Effects of rhizosphere-applied 5-aminolevulinic acid (ALA) solutions on leaf physiological characteristics and fruit quality of apples[J].,2015,(02):158.[doi:10.3969/j.issn.1000-4440.2015.01.025]
[2]牛鹏飞,申远,李帅,等.苹果中福美胂残留的RP-HPLC检测[J].江苏农业学报,2018,(03):706.[doi:doi:10.3969/j.issn.1000-4440.2018.03.033]
 NIU Peng-fei,SHEN Yuan,LI Shuai,et al.Determination of residual asomate in apple by reversed-phase high-performance liquid chromatography (RP-HPLC)[J].,2018,(02):706.[doi:doi:10.3969/j.issn.1000-4440.2018.03.033]
[3]车金庆,王帆,王艺洁,等.基于视觉注意机制的黄绿色苹果图像分割[J].江苏农业学报,2018,(06):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
 CHE Jin-qing,WANG Fan,WANG Yi-jie,et al.A segmentation method of yellow and green apple images based on visual attention mechanism[J].,2018,(02):1347.[doi:doi:10.3969/j.issn.1000-4440.2018.06.021]
[4]张永超,赵录怀,王昊,等.基于环境气体信息的BP神经网络苹果贮藏品质预测[J].江苏农业学报,2020,(01):194.[doi:doi:10.3969/j.issn.1000-4440.2020.01.027]
 ZHANG Yong-chao,ZHAO Lu-huai,WANG Hao,et al.Prediction of apple storage quality using BP neural network based on environmental gas information[J].,2020,(02):194.[doi:doi:10.3969/j.issn.1000-4440.2020.01.027]
[5]徐臣善,徐爱红,萧蓓蕾,等.授粉品种对红富士苹果果实糖积累及其代谢相关酶活性的影响[J].江苏农业学报,2021,(01):121.[doi:doi:10.3969/j.issn.1000-4440.2021.01.016]
 XU Chen-shan,XU Ai-hong,XIAO Bei-lei,et al.Effects of pollination varieties on sugar accumulation and metabolism related enzyme activities in red Fuji apple fruit[J].,2021,(02):121.[doi:doi:10.3969/j.issn.1000-4440.2021.01.016]
[6]张俊娜,王冲,张东,等.小农户管理行为对苹果园郁闭度的影响[J].江苏农业学报,2021,(01):163.[doi:doi:10.3969/j.issn.1000-4440.2021.01.021]
 ZHANG Jun-na,WANG Chong,ZHANG Dong,et al.Effect of smallholder farmers’ management behavior on the canopy density of apple orchard[J].,2021,(02):163.[doi:doi:10.3969/j.issn.1000-4440.2021.01.021]
[7]王新亮,彭玲,王健,等.苹果Dof转录因子生物信息学及其表达分析[J].江苏农业学报,2021,(02):480.[doi:doi:10.3969/j.issn.1000-4440.2021.02.026]
 WANG Xin-liang,PENG Ling,WANG Jian,et al.Bioinformatics and expression analysis of the Dof transcription factors in apple[J].,2021,(02):480.[doi:doi:10.3969/j.issn.1000-4440.2021.02.026]
[8]陈光明,孔浩然,章永年,等.苹果机器人采摘存在的关键问题及对策[J].江苏农业学报,2022,38(06):1709.[doi:doi:10.3969/j.issn.1000-4440.2022.06.030]
 CHEN Guang-ming,KONG Hao-ran,ZHANG Yong-nian,et al.Key problems and countermeasures of apple machine picking[J].,2022,38(02):1709.[doi:doi:10.3969/j.issn.1000-4440.2022.06.030]
[9]班兆军,高喧翔,马肄恒,等.基于高光谱和深度学习的苹果品质无损检测方法[J].江苏农业学报,2024,(08):1446.[doi:doi:10.3969/j.issn.1000-4440.2024.08.009]
 BAN Zhaojun,GAO Xuanxiang,MA Yiheng,et al.Non-destructive detection method of apple quality based on hyperspectral and deep learning[J].,2024,(02):1446.[doi:doi:10.3969/j.issn.1000-4440.2024.08.009]

备注/Memo

备注/Memo:
收稿日期:2018-08-01 基金项目:江苏省自然科学青年基金项目(BK20140266);江苏省高等学校自然科学研究项目 (17KJB416002);常州市科技计划资助项目(CJ20179057、CJ20180021); 常州工程职业技术学院科研基金项目(11130300118019);常州大学海外研修计划项目 作者简介:车金庆(1979-),男,江苏南京人,硕士,讲师,主要研究方向为图像处理、软件开发。(E-mail)jqche@czie.edu.cn 通讯作者:吕继东,(E-mail) vveaglevv@163.com
更新日期/Last Update: 2019-05-05