参考文献/References:
[1]吴龙国,王松磊,康宁波,等.基于高光谱成像技术的灵武长枣缺陷识别[J].农业工程学报,2015,31(20):281-286.
[2]姚佳,胡小松,廖小军,等.高静压对果蔬制品质构影响的研究进展[J].农业机械学报,2013,44(9):118-124,117.
[3]马庆华,王贵禧,梁丽松,等.冬枣的穿刺质地及其影响因素[J].林业科学研究,2011,24(5):596-601.
[4]梁静,孙锐,孙蕾,等.不同品种果桑穿刺试验质构特性分析[J].山东林业科技,2017,47(5):26-30.
[5]杜雪燕,王迅,柴沙驼,等.基于近红外光谱的天然牧草CNCPS组分分析与预测[J].江苏农业学报,2015,31(5):1115-1123.
[6]HUANG J, PENG S. Comparison and standardization among Chlorophyll meters in their readings on rice leaves[J].Plant Production Science,2004,7(1):97-100.
[7]石鲁珍,陈杰,张树艳,等.基于蒙特卡洛法红枣光谱水分模型研究[J].江苏农业科学,2018,46(14):205-208.
[8]陈辰,鲁晓翔,张鹏,等.基于可见-近红外漫反射光谱技术的葡萄贮藏期间可溶性固形物定量预测[J].食品科学,2015,36(20):109-114.
[9]CARAMES E T S, ALAMAR P D, POPPI R J,et al. Quality control of cashew apple and guava nectar by near infrared spectroscopy[J].Journal of Food Composition & Analysis,2017, 56:41-46.
[10]PAZ P, SANCHEZ M T, PEREZMARIN D, et al. Evaluating NIR instruments for quantitative and qualitative assessment of intact apple quality[J].Journal of the Science of Food & Agriculture, 2009,89(5):781-790.
[11]闫润,王新忠,邱白晶,等.基于特征光谱的草莓品种快速鉴别[J].农业机械学报,2013,44(9):182-186.
[12]刘燕德,吴明明,孙旭东,等.黄桃表面缺陷和可溶性固形物光谱同时在线检测[J].农业工程学报,2016,32(6):289-295.
[13]NICOLAI B M, THERON K I, LAMMERTYN J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple[J].Chemometrics & Intelligent Laboratory Systems,2007,85(2):243-252.
[14]MA T, LI X, INAGAKI T, et al. Noncontact evaluation of soluble solids content in apples by Near-infrared hyperspectral imaging[J].Journal of Food Engineering,2017,224:53-61.
[15]ELMASRY G, WANG N, ELSAYED A, et al. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry[J].Journal of Food Engineering,2007, 81(1):98-107.
[16]马庆华,王贵禧,梁丽松.质构仪穿刺试验检测冬枣质地品质方法的建立[J].中国农业科学,2011,44(6):1210-1217.
[17]陈亚斌.基于高光谱和荧光高光谱技术的灵武长枣内部成分无损检测研究[D].银川:宁夏大学,2017.
[18]SU W H, BAKALIS S, SUN D W. Fourier transform mid-infrared-attenuated total reflectance (FTMIR-ATR) microspectroscopy for determining textural property of microwave baked tuber[J]. Journal of Food Engineering,2018,218:1-13.
[19]张初.基于光谱与光谱成像技术的油菜病害检测机理与方法研究[D].杭州:浙江大学,2016.
[20]左婷.基于高光谱图像技术的夏橙质构特性检测方法研究[D].武汉:华中农业大学,2015.
[21]欧阳爱国,谢小强,刘燕德,等.苹果可溶性固形物近红外在线光谱变量优选[J].农业机械学报,2014,45(4):220-225.
[22]WANG Q, XUE W Q, MA H X, et al.Quantitative analysis of seed purity for maize usingnear infrared spectroscopy[J].Transactions of the Chinese Society of Agricultural Engineering,2012:259-264.
[23]黄敏,朱晓,朱启兵,等.基于高光谱图像的玉米种子特征提取与识别[J].光子学报,2012,41(7):868-873.
[24]彭彦昆,赵芳,李龙,等.利用近红外光谱与PCA-SVM识别热损伤番茄种子[J].农业工程学报,2018,34(5):159-165.
[25]黄志明,林素英,傅明连,等.枇杷果实发育过程中果肉质地与胞壁酶活性的变化[J]. 热带作物学报,2012,33(1):24-29.
[26]商亮,谷静思,郭文川.基于介电特性及ANN的油桃糖度无损检测方法[J].农业工程学报,2013,29(17):257-264.
相似文献/References:
[1]张平平,张瑜,唐果,等.近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,(06):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
ZHANG Ping-ping,ZHANG Yu,TANG Guo,et al.Measurement of SDS-unextractable polymeric protein content in wheat flour based on near-infrared spectroscopy (NIRS) technique[J].,2017,(01):1207.[doi:doi:10.3969/j.issn.1000-4440.2017.06.002]
[2]仇逊超.红松仁脂肪的近红外光谱定量检测[J].江苏农业学报,2018,(03):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
QIU Xun-chao.Quantitative detection of fat in peeled Korean pine seeds using near infrared spectroscopy[J].,2018,(01):692.[doi:doi:10.3969/j.issn.1000-4440.2018.03.031]
[3]张津源,张德贤,张苗.基于连续投影算法的小麦蛋白质含量近红外光谱预测分析[J].江苏农业学报,2019,(04):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
ZHANG Jin yuan,ZHANG De xian,ZHANG Miao.Prediction and analysis of wheat protein content by nearinfrared spectroscopy based on successive projections algorithm[J].,2019,(01):960.[doi:doi:10.3969/j.issn.1000-4440.2019.04.030]
[4]曲歌,陈争光,张庆华.基于无信息变量消除法的水稻种子发芽率测定[J].江苏农业学报,2019,(05):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
QU Ge,CHEN Zheng-guang,ZHANG Qing-hua.Study on germination rate of rice seed based on uninformation variable elimination method[J].,2019,(01):1015.[doi:doi:10.3969/j.issn.1000-4440.2019.05.002]
[5]孙晓明,陈小龙,余向阳,等.基于近红外光谱分析技术的水蜜桃产地溯源[J].江苏农业学报,2020,(02):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
SUN Xiao-ming,CHEN Xiao-long,YU Xiang-yang,et al.Traceability of honey peach origin using near infrared spectroscopy analysis techniques[J].,2020,(01):507.[doi:doi:10.3969/j.issn.1000-4440.2020.02.035]
[6]方瑶,谢天铧,郭渭,等.基于近红外光谱的金鲳鱼新鲜度快速检测技术[J].江苏农业学报,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
FANG Yao,XIE Tian-hua,GUO Wei,et al.Rapid detection technology of pomfret freshness based on near infrared spectroscopy[J].,2021,(01):213.[doi:doi:10.3969/j.issn.1000-4440.2021.01.028]
[7]谢文涌,柴琴琴,林旎,等.基于Stacking集成学习的马兜铃酸及其类似物鉴别[J].江苏农业学报,2021,(02):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
XIE Wen-yong,CHAI Qin-qin,LIN Ni,et al.Discrimination of aristolochic acid and its analogues based on stacking ensemble learning[J].,2021,(01):503.[doi:doi:10.3969/j.issn.1000-4440.2021.02.028]
[8]沈广辉,曹瑶瑶,刘馨,等.近红外高光谱成像结合特征波长筛选识别小麦赤霉病瘪粒[J].江苏农业学报,2021,(02):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
SHEN Guang-hui,CAO Yao-yao,LIU Xin,et al.Identification of Fusarium damaged kernels using near infrared hyperspectral imaging and characteristic bands selection[J].,2021,(01):509.[doi:doi:10.3969/j.issn.1000-4440.2021.02.029]
[9]仇逊超,张春越,张怡卓,等.流形学习在红松籽仁蛋白质含量近红外检测中的应用[J].江苏农业学报,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]
QIU Xun-chao,ZHANG Chun-yue,ZHANG Yi-zhuo,et al.Application of manifold learning in quantitative detection of protein in Korean pine seed kernels using near-infrared quantitative detection[J].,2023,(01):246.[doi:doi:10.3969/j.issn.1000-4440.2023.01.028]