参考文献/References:
[1]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.
[2]PABO C O, SAUER R T. Transcription factors:structural families and principles of DNA recognition[J]. Annu Rev Biochem, 1992, 61:1053-1095.
[3]WANAPU C, SHINMYO A. Cis-regulatory elements of the peroxidase gene in Arabidopsis thaliana involved in root-specific expression and responsiveness to high-salt stress[J]. Ann N Y Acad Sci, 1996, 782:107-114.
[4]YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2):251-264.
[5]MATYS V, KEL-MARGOULIS O V, FRICKE E, et al. TRANSFAC and its module TRANS Compel:transcriptional gene regulation in eukaryotes[J]. Nucleic Acids Res, 2006, 34(Database issue):D108-D110.
[6]ATCHLEY W R, TERHALLE W, DRESS A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain[J]. J Mol Evol, 1999, 48(5):501-516.
[7]HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.
[8]PIRES N, DOLAN L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Mol Biol Evol, 2010, 27(4):862-874.
[9]CARRETERO-PAULET L, GALSTYAN A, ROIG-VILLANOVA I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol, 2010, 153(3):1398-1412.
[10]ATCHLEY W R, FITCH W M. A natural classification of the basic helix-loop-helix class of transcription factors[J]. Proc Natl Acad Sci USA, 1997, 94(10):5172-5176.
[11]LI X, DUAN X, JIANG H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiol, 2006, 141(4):1167-1184.
[12]SONG X M, HUANG Z N, DUAN W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Mol Genet Genomics, 2014, 289(1):77-91.
[13]RUSHTON P J, BOKOWIEC M T, HAN S, et al. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae[J]. Plant Physiol, 2008, 147(1):280-295.
[14]NIU X, GUAN Y, CHEN S, et al. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon[J]. BMC Genomics, 2017, 18(1):619.
[15]SUN H, FAN H J, LING H Q. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics,2015, 16:9.
[16]杨丽梅,方智远,刘玉梅,等. “十一五”我国甘蓝遗传育种研究进展[J]. 中国蔬菜,2011(2):1-10.
[17]靳哲,张扬勇,方智远,等. 结球甘蓝BoCBF1与BoCBF2基因的CAPS标记及其对耐寒性的影响[J]. 中国蔬菜,2012(14):23-30.
[18]夏瑞祥,肖宁,洪义欢,等. 东乡野生稻苗期耐冷性的QTL定位[J]. 中国农业科学, 2010, 43(3):443-451.
[19]HUANG G T, MA S L, BAI L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Mol Biol Rep, 2012, 39(2):969-987.
[20]CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8):1043-1054.
[21]LIU C, WU Y, WANG X. bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169.
[22]OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(11):3045-3058.
[23]ZHAO H, LI X, MA L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis[J]. Plant Signal Behav, 2012, 7(12):1556-1560.
[24]GROSZMANN M, BYLSTRA Y, LAMPUGNANI E R, et al. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis[J]. J Exp Bot, 2010, 61(5):1495-1508.
[25]FARQUHARSON K L. A domain in the bHLH transcription factor DYT1 Is critical for anther development[J]. Plant Cell, 2016, 28(5):997-998.
[26]RAJANI S, SUNDARESAN V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence[J]. Curr Biol, 2001, 11(24):1914-1922.
[27]MATUS J T, POUPIN M J, CANON P, et al. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.)[J]. Plant Mol Biol, 2010, 72(6):607-620.
[28]LEIVAR P, MONTE E, OKA Y, et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness[J].Curr Biol, 2008, 18(23):1815-1823.
[29]NAKATA M, MITSUDA N, HERDE M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656.
[30]KAVAS M, BALOGLU M C, ATABAY E S, et al. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration[J]. Mol Genet Genomics, 2016, 291(1):129-143.
[31]LONG T A, TSUKAGOSHI H, BUSCH W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J].Plant Cell, 2010, 22(7):2219-2236.
[32]王翠,兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J].生命科学研究, 2016, 20(4):358-364.
[33]TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.
[34]曹宁,张启翔,郝瑞杰,等. 梅花PmICE1基因的克隆及低温条件下的表达[J].东北林业大学学报, 2014,42(4):21-25.
[35]向殿军,殷奎德,满丽莉,等. 大白菜低温胁迫转录因子BcICE1的克隆及表达分析[J].分子植物育种, 2011, 9(3):364-369.
[36]刘海霞,康俊根,颉建明,等. 甘蓝OguCMS相关的花药优势表达转录因子BoBHLH1的克隆与表达分析[J].园艺学报, 2010, 37(12):1953-1960.
[37]豆玉娟,曹飞,马跃,等. 栽培草莓果实中特异表达的bHLH78基因的克隆及过量表达载体构建[J].分子植物育种, 2014,12(3):456-465.
[38]杨娜. 独行菜种子低温萌发耐受性特性及bHLH类转录因子分析[D].乌鲁木齐:新疆师范大学, 2017.
[39]FOWLER S, THOMASHOW M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14(8):1675-1690.
[40]姚攀锋,赵学荣,李茂菲,等. 苦荞转录因子基因FtbHLH3的克隆及其非生物胁迫下的表达分析[J].基因组学与应用生物学, 2016, 35(2):429-435.
[41]李晓刚,李慧,杨青松,等. 杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J].江苏农业科学, 2017, 45(22):40-45.
[42]李宇伟,连瑞丽,王新民. 蒺藜苜蓿低温胁迫响应基因MtbHLH-1的克隆及功能分析[J].中国农业科学, 2012, 45(16):3430-3436.
[43]袁琳琳,王亚茹,曾卫军,等. 独行菜种子bHLH类转录因子基因家族及幼苗laICE1表达对冷胁迫的响应[J].西北植物学报, 2018, 38(1):26-34.
[44]何洁,顾秀容,魏春华,等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析[J].园艺学报, 2016, 43(2):281-294.
相似文献/References:
[1]闫圆圆,曾爱松,宋立晓,等.结球甘蓝幼苗耐热性鉴定方法及耐热生理[J].江苏农业学报,2016,(04):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
YAN Yuan-yuan,ZENG Ai-song,SONG Li-xiao,et al.Identification of heat tolerance in cabbage seedlings and heat-tolerant physiology[J].,2016,(01):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
[2]戴忠良,陈丽,山溪,等.甘蓝晚抽薹基因BoFLC3克隆、序列分析和亚细胞定位[J].江苏农业学报,2018,(06):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
DAI Zhong-liang,CHEN Li,SHAN Xi,et al.Cloning, sequence analysis and subcellular localization of Brassica oleraceaBoFLC3 gene[J].,2018,(01):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
[3]郭峰,孙莹,安容慧,等.LED绿光处理对甘蓝采后品质及抗氧化活性的影响[J].江苏农业学报,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
GUO Feng,SUN Ying,AN Rong-hui,et al.Effects of green light-emitting diode light treatment on the quality and antioxidant capacity of postharvest green cabbage (Brassica oleracea var. capitata L.)[J].,2023,(01):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
[4]刘志刚,余方伟,张伟,等.甘蓝黑斑病病原菌鉴定及其对杀菌剂的敏感性[J].江苏农业学报,2023,(04):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]
LIU Zhi-gang,YU Fang-wei,ZHANG Wei,et al.Identification and fungicide sensitivity of the pathogen causing black spot on Brassica oleracea var. capitata L.[J].,2023,(01):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]