[1]秦文斌,戴忠良,山溪,等.甘蓝冷胁迫相关基因BobHLH18克隆与表达分析[J].江苏农业学报,2019,(01):149-156.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
 QIN Wen-bin,DAI Zhong-liang,SHAN Xi,et al.Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)[J].,2019,(01):149-156.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
点击复制

甘蓝冷胁迫相关基因BobHLH18克隆与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
149-156
栏目:
园艺
出版日期:
2019-02-26

文章信息/Info

Title:
Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)
作者:
秦文斌1戴忠良1山溪1唐君2王神云2李建斌2
(1.江苏丘陵地区镇江农业科学研究所,江苏句容212400;2.江苏省高效园艺作物遗传改良重点实验室/江苏省农业科学院蔬菜研究所,江苏南京210014)
Author(s):
QIN Wen-bin1DAI Zhong-liang1SHAN Xi1TANG Jun2WANG Shen-yun2LI Jian-bin2
(1.Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Jurong 212400, China;2.Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
甘蓝BobHLH18转录因子冷胁迫
Keywords:
cabbageBoHLH18transcription factorscold stress
分类号:
S635
DOI:
doi:10.3969/j.issn.1000-4440.2019.01.022
文献标志码:
A
摘要:
利用同源克隆方法在耐寒,迟抽薹甘蓝自交系Y923中克隆到一个甘蓝响应冷胁迫bHLH转录因子基因BobHLH18的DNA和cDNA全长,基因组搜索分析结果表明,该基因位于甘蓝1号染色体上,属于LF1亚基因组编码基因;序列分析结果表明,该基因含有4个外显子和3个内含子,编码338个氨基酸,蛋白质分子量为38 380,等电点为6.80,其编码蛋白质的N端含有一个bHLH结构域;亚细胞定位分析指出该基因编码蛋白质定位在细胞核上,表明该基因编码蛋白质为核定位蛋白质,与其为转录因子特征相符;序列比对结果显示,BobHLH18蛋白与白菜和拟南芥中的bHLH蛋白具有较高的同源性,相似度分别为90.5%和89.0%;聚类分析指出BobHLH18及其同源蛋白分别聚类成2个进化分支,且来自十字花科植物的bHLH18同源蛋白质都聚在同一进化分支上;qRT-PCR分析结果表明BobHLH18基因受冷胁迫诱导,能在叶片中被较高的诱导表达,表明该基因可能在甘蓝叶片应答冷胁迫过程中起重要作用。
Abstract:
In this study, a gene full-length sequence of the cold stress-related bHLH transcription factor BobHLH18, was isolated from the cabbage inbred line Y923 with cold and bolting resistance by homologous cloning methods. Genome search analysis results showed that this gene was located on C01 chromosome of cabbage, which belonged to the LF1 sub-genome. Sequence analysis results showed that this gene contained four exons and three introns, and its encoded protein contained 338 amino acids with the molecular weight of 38 380 and the isoelectric point of 6.80, its N terminal contained bHLH domain. Subcellular localization predication analysis results indicated that the protein encoded by BobHLH18 was located on the nucleus and had nuclear protein features, which was consistent with transcription factor characteristics. Homology analysis results showed that BobHLH18 protein had high homology with bHLH18 protein in Chinese cabbage and Arabidopsis, and the similarities were 90.5% and 89.0%, respectively. Cluster analysis results showed that BobHLH18 and its homologous proteins could be divided into two evolutionary branches, and the bHLH18 homologs from the cruciferous plants could be clustered into the same division. qRT-PCR analysis results indicated that BobHLH18 gene was induced by cold stress and had high expression levels at 12 h after cold treatment, suggesting that BobHLH18 gene may play an important role in the response of cabbage leaves to cold stress.

参考文献/References:

[1]RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110.
[2]PABO C O, SAUER R T. Transcription factors:structural families and principles of DNA recognition[J]. Annu Rev Biochem, 1992, 61:1053-1095.
[3]WANAPU C, SHINMYO A. Cis-regulatory elements of the peroxidase gene in Arabidopsis thaliana involved in root-specific expression and responsiveness to high-salt stress[J]. Ann N Y Acad Sci, 1996, 782:107-114.
[4]YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. Plant Cell, 1994, 6(2):251-264.
[5]MATYS V, KEL-MARGOULIS O V, FRICKE E, et al. TRANSFAC and its module TRANS Compel:transcriptional gene regulation in eukaryotes[J]. Nucleic Acids Res, 2006, 34(Database issue):D108-D110.
[6]ATCHLEY W R, TERHALLE W, DRESS A. Positional dependence, cliques, and predictive motifs in the bHLH protein domain[J]. J Mol Evol, 1999, 48(5):501-516.
[7]HEIM M A, JAKOBY M, WERBER M, et al. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity[J]. Mol Biol Evol, 2003, 20(5):735-747.
[8]PIRES N, DOLAN L. Origin and diversification of basic-helix-loop-helix proteins in plants[J]. Mol Biol Evol, 2010, 27(4):862-874.
[9]CARRETERO-PAULET L, GALSTYAN A, ROIG-VILLANOVA I, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae[J]. Plant Physiol, 2010, 153(3):1398-1412.
[10]ATCHLEY W R, FITCH W M. A natural classification of the basic helix-loop-helix class of transcription factors[J]. Proc Natl Acad Sci USA, 1997, 94(10):5172-5176.
[11]LI X, DUAN X, JIANG H, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis[J]. Plant Physiol, 2006, 141(4):1167-1184.
[12]SONG X M, HUANG Z N, DUAN W K, et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Mol Genet Genomics, 2014, 289(1):77-91.
[13]RUSHTON P J, BOKOWIEC M T, HAN S, et al. Tobacco transcription factors:novel insights into transcriptional regulation in the Solanaceae[J]. Plant Physiol, 2008, 147(1):280-295.
[14]NIU X, GUAN Y, CHEN S, et al. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon[J]. BMC Genomics, 2017, 18(1):619.
[15]SUN H, FAN H J, LING H Q. Genome-wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics,2015, 16:9.
[16]杨丽梅,方智远,刘玉梅,等. “十一五”我国甘蓝遗传育种研究进展[J]. 中国蔬菜,2011(2):1-10.
[17]靳哲,张扬勇,方智远,等. 结球甘蓝BoCBF1与BoCBF2基因的CAPS标记及其对耐寒性的影响[J]. 中国蔬菜,2012(14):23-30.
[18]夏瑞祥,肖宁,洪义欢,等. 东乡野生稻苗期耐冷性的QTL定位[J]. 中国农业科学, 2010, 43(3):443-451.
[19]HUANG G T, MA S L, BAI L P, et al. Signal transduction during cold, salt, and drought stresses in plants[J]. Mol Biol Rep, 2012, 39(2):969-987.
[20]CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis[J]. Genes Dev, 2003, 17(8):1043-1054.
[21]LIU C, WU Y, WANG X. bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169.
[22]OH E, KIM J, PARK E, et al. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana[J]. Plant Cell, 2004, 16(11):3045-3058.
[23]ZHAO H, LI X, MA L. Basic helix-loop-helix transcription factors and epidermal cell fate determination in Arabidopsis[J]. Plant Signal Behav, 2012, 7(12):1556-1560.
[24]GROSZMANN M, BYLSTRA Y, LAMPUGNANI E R, et al. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis[J]. J Exp Bot, 2010, 61(5):1495-1508.
[25]FARQUHARSON K L. A domain in the bHLH transcription factor DYT1 Is critical for anther development[J]. Plant Cell, 2016, 28(5):997-998.
[26]RAJANI S, SUNDARESAN V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence[J]. Curr Biol, 2001, 11(24):1914-1922.
[27]MATUS J T, POUPIN M J, CANON P, et al. Isolation of WDR and bHLH genes related to flavonoid synthesis in grapevine (Vitis vinifera L.)[J]. Plant Mol Biol, 2010, 72(6):607-620.
[28]LEIVAR P, MONTE E, OKA Y, et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness[J].Curr Biol, 2008, 18(23):1815-1823.
[29]NAKATA M, MITSUDA N, HERDE M, et al. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656.
[30]KAVAS M, BALOGLU M C, ATABAY E S, et al. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration[J]. Mol Genet Genomics, 2016, 291(1):129-143.
[31]LONG T A, TSUKAGOSHI H, BUSCH W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J].Plant Cell, 2010, 22(7):2219-2236.
[32]王翠,兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展[J].生命科学研究, 2016, 20(4):358-364.
[33]TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.
[34]曹宁,张启翔,郝瑞杰,等. 梅花PmICE1基因的克隆及低温条件下的表达[J].东北林业大学学报, 2014,42(4):21-25.
[35]向殿军,殷奎德,满丽莉,等. 大白菜低温胁迫转录因子BcICE1的克隆及表达分析[J].分子植物育种, 2011, 9(3):364-369.
[36]刘海霞,康俊根,颉建明,等. 甘蓝OguCMS相关的花药优势表达转录因子BoBHLH1的克隆与表达分析[J].园艺学报, 2010, 37(12):1953-1960.
[37]豆玉娟,曹飞,马跃,等. 栽培草莓果实中特异表达的bHLH78基因的克隆及过量表达载体构建[J].分子植物育种, 2014,12(3):456-465.
[38]杨娜. 独行菜种子低温萌发耐受性特性及bHLH类转录因子分析[D].乌鲁木齐:新疆师范大学, 2017.
[39]FOWLER S, THOMASHOW M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14(8):1675-1690.
[40]姚攀锋,赵学荣,李茂菲,等. 苦荞转录因子基因FtbHLH3的克隆及其非生物胁迫下的表达分析[J].基因组学与应用生物学, 2016, 35(2):429-435.
[41]李晓刚,李慧,杨青松,等. 杜梨bHLH转录因子家族两成员的序列特征及对非生物胁迫的转录响应[J].江苏农业科学, 2017, 45(22):40-45.
[42]李宇伟,连瑞丽,王新民. 蒺藜苜蓿低温胁迫响应基因MtbHLH-1的克隆及功能分析[J].中国农业科学, 2012, 45(16):3430-3436.
[43]袁琳琳,王亚茹,曾卫军,等. 独行菜种子bHLH类转录因子基因家族及幼苗laICE1表达对冷胁迫的响应[J].西北植物学报, 2018, 38(1):26-34.
[44]何洁,顾秀容,魏春华,等. 西瓜bHLH转录因子家族基因的鉴定及其在非生物胁迫下的表达分析[J].园艺学报, 2016, 43(2):281-294.

相似文献/References:

[1]闫圆圆,曾爱松,宋立晓,等.结球甘蓝幼苗耐热性鉴定方法及耐热生理[J].江苏农业学报,2016,(04):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
 YAN Yuan-yuan,ZENG Ai-song,SONG Li-xiao,et al.Identification of heat tolerance in cabbage seedlings and heat-tolerant physiology[J].,2016,(01):885.[doi:10.3969/j.issn.100-4440.2016.04.027]
[2]戴忠良,陈丽,山溪,等.甘蓝晚抽薹基因BoFLC3克隆、序列分析和亚细胞定位[J].江苏农业学报,2018,(06):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
 DAI Zhong-liang,CHEN Li,SHAN Xi,et al.Cloning, sequence analysis and subcellular localization of Brassica oleraceaBoFLC3 gene[J].,2018,(01):1324.[doi:doi:10.3969/j.issn.1000-4440.2018.06.018]
[3]郭峰,孙莹,安容慧,等.LED绿光处理对甘蓝采后品质及抗氧化活性的影响[J].江苏农业学报,2023,(02):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
 GUO Feng,SUN Ying,AN Rong-hui,et al.Effects of green light-emitting diode light treatment on the quality and antioxidant capacity of postharvest green cabbage (Brassica oleracea var. capitata L.)[J].,2023,(01):489.[doi:doi:10.3969/j.issn.1000-4440.2023.02.022]
[4]刘志刚,余方伟,张伟,等.甘蓝黑斑病病原菌鉴定及其对杀菌剂的敏感性[J].江苏农业学报,2023,(04):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]
 LIU Zhi-gang,YU Fang-wei,ZHANG Wei,et al.Identification and fungicide sensitivity of the pathogen causing black spot on Brassica oleracea var. capitata L.[J].,2023,(01):947.[doi:doi:10.3969/j.issn.1000-4440.2023.04.004]

备注/Memo

备注/Memo:
收稿日期:2018-03-16 基金项目:国家重点研发计划项目(2016YFD0101702);江苏省重点研发计划项目(BE2017379);江苏省农业科技自主创新基金项目[CX(15)1016];宁波市科技计划项目(2015C110008) 作者简介:秦文斌(1971-),男,江苏句容人,本科,副研究员,从事蔬菜栽培育种研究。(E-mial)qinwenbinbin@126.com 通讯作者:李建斌,(E-mial)jbli0518@163.com
更新日期/Last Update: 2019-02-27