参考文献/References:
[1]陈祯东,陈日钊,张紫英,等. 南宁市罗非鱼池塘表层沉积物铜、锌、氮、磷含量及其生态风险分析[J]. 南方农业学报,2018,49(9):1865-1872.
[2]PEREIRA S, MICHELETTI E, ZILLE A, et al. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell?[J]. Microbiology, 2011, 157(2): 451-458.
[3]汪苹,胡章立. 衣藻细胞的重金属结合特性及其抗性机制[J]. 环境科学与技术, 2009, 32(1):84-89.
[4]陈镜伊,唐婉莹,尹洪斌,等. 蓝藻的生消过程对镉污染沉积物的生物有效性[J]. 江苏农业科学,2018,46(20):320-324.
[5]CHAKRABORTY N, BANERJEE A, PAL R. Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South 24-Parganas using algae as bioreagent[J]. Journal of Algal Biomass Utilization, 2011, 2(3): 27-41.
[6]吴文娟,李建宏,刘畅,等. 微囊藻水华的资源化利用: 吸附重金属离子Cu2+、Cd2+和Ni2+的实验研究[J]. 湖泊科学, 2014, 26(3): 417-422.
[7]SINGH S, PRADHAN S, RAI L C. Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory-grown Microcystis[J]. Process Biochemistry, 1998, 33(5): 495-504.
[8]NEWBY J R R, LEE L H, PEREZ J L, et al. Characterization of zinc stress response in cyanobacterium Synechococcus sp. IU 625[J]. Aquatic Toxicology, 2017, 186: 159-170.
[9]FISHER N S. On the reactivity of metals for marine phytoplankton[J]. Limnology and Oceanography, 1986, 31(2): 443-449.
[10]王伟,樊祥科,黄春贵,等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3):494-501.
[11]SU Y, LIU H, YANG J. Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from nanquan coast of Taihu lake, China[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(2): 439-443.
[12]SUMAN T Y, RAJASREE S R R, KIRUBAGARAN R. Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis[J]. Ecotoxicology and Environmental Safety, 2015, 113: 23-30.
[13]杨洪,黄志勇. 锌胁迫对小球藻抗氧化酶和类金属硫蛋白的影响[J]. 生态学报, 2012, 32(22):7117-7123.
[14]FERNANDEZ-GARCA N, MART M C, JIMENEZ A, et al. Sub-cellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate[J]. Journal of Plant Physiology, 2009, 166(18): 2004-2012.
[15]刘璐,闫浩,夏文彤,等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014, 34(2):478-484.
[16]XU K, LI Z K, QIU B S, et al. Different responses to high light stress of toxic and non-toxic Microcystis aeruginosa acclimated under two light intensities and zinc concentrations[J]. Toxicological & Environmental Chemistry, 2013, 95(7): 1145-1156.
[17]尹文珂,程金凤,肖婉露,等. 四尾栅藻对重金属镉胁迫的响应[J]. 农业环境科学学报, 2015, 34(4):633-638.
[18]孔繁翔,马荣华,高俊峰,等. 太湖蓝藻水华的预防、预测和预警的理论与实践[J]. 湖泊科学, 2009, 21(3):314-328.
[19]倪利晓,马艳艳,叶祥,等. 藻细胞活性及营养盐水平对铜绿微囊藻吸附镉的影响研究[J]. 环境科技, 2013, 26(3):1-4.
[20]江江,李玉成,王宁,等. 巢湖蓝藻聚集对重金属迁移释放的影响[J]. 湖泊科学, 2017, 29(3):558-566.
[21]RIPPKA R, DERUELLES J, WATERBURY J B, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria[J]. Microbiology, 1979, 111(1): 1-61.
[22]OUYANG H L, KONG X Z, HE W, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris[J]. Chinese Science Bulletin, 2012, 57(25): 3363-3370.
[23] 欧阳慧灵,孔祥臻,何玘霜,等. Cu2+对普通小球藻的光合毒性:初始藻密度的影响[J]. 生态毒理学报, 2011, 6(5):499-506.
[24] 吴洁,陈晓娣,韩萍芳,等. 离子液体对微藻的急性毒性效应[J]. 安全与环境学报, 2016, 16(1):381-386.
[25]BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[26] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287.
[27]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867-880.
[28]王执伟,刘冬梅,张文娟,等. 溴酸盐对普通小球藻的生长以及生理特性的影响[J]. 环境科学, 2016, 37(6):2158-2163.
[29]KUMAR K S, DAHMS H U, LEE J S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology and Environmental Safety, 2014, 104(2): 51-71.
[30]VERHEYEN L, VERSIEREN L, SMOLDERS E. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions[J]. Aquatic Toxicology, 2014, 154: 80-86.
[31]SHENG P X, TING Y P, CHEN J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interface Science, 2004, 275(1): 131-141.
[32]GONZLEZ-DVILA M. The role of phytoplankton cells on the control of heavy metal concentration in seawater[J]. Marine Chemistry, 1995, 48(3/4): 215-236.
[33]DA COSTA A A, DE FRANCA F P. Cadmium uptake by Spirulina maxima: toxicity and mechanism[J]. World Journal of Microbiology and Biotechnology, 1998, 14(4): 579-581.
[34]张铁明,杜桂森,杨忠山,等. 锌对2种淡水浮游藻类增殖的影响[J]. 西北植物学报, 2006, 26(8):1722-1726.
[35]刘慧,张宇宏,张少斌,等. Cd2+胁迫对螺旋藻生长、光谱特性及藻胆蛋白质量浓度的影响[J]. 生态环境学报, 2007,16(3):767-770.
[36]KOVCˇIK J, KLEJDUS B, TORK F, et al. Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in scenedesmus quadricauda (chlorophyta, chlorophyceae)[J]. Journal of Phycology, 2011, 47(5): 1044-1049.
[37]冯政,郑新梅,刘红玲,等. 全氟辛酸对斜生栅藻细胞膜特性影响研究[J]. 生态毒理学报, 2010, 5(4):537-542.
[38]JIAO Y, OUYANG H L, JIANG Y J, et al. Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis[J]. Ecological Indicators, 2017, 78: 131-141.
[39]MACHADO M D, SOARES E V. Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress[J]. Journal of Applied Phycology, 2015, 27(2): 805-813.
[40]于洋,孔繁翔,王美林,等. 应用流式细胞技术研究铜对藻细胞膜完整性及脂酶活性的影响[J]. 应用与环境生物学报, 2006, 12(5):706-709.
[41]LAGE O M, SANSONETTY F, O'CONNOR J E, et al. Flow cytometric analysis of chronic and acute toxicity of copper(II) on the marine dinoflagellate Amphidinium carterae[J]. Cytometry, 2001, 44(3):226-235.
[42]MURCHIE E H, LAWSON T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. Journal of Experimental Botany, 2013, 64(13): 3983-3998.
[43]XU K, JUNEAU P. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc[J]. Aquatic Toxicology, 2016, 170: 251-258.
[44]PLEKHANOV S E, CHEMERIS Y K. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39[J]. Biology Bulletin of the Russian Academy of Sciences, 2003, 30(5):506-511.
[45]COLLN J, PINTO E, PEDERSEN M, et al. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(3): 337-342.
[46]CHOUDHARY M, JETLEY U K, KHAN M A, et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and Environmental Safety, 2007, 66(2): 204-209.
相似文献/References:
[1]魏思雨,王亚波,邵阳,等.近地层大气臭氧浓度升高对麦季土壤Zn 生物有效性的影响[J].江苏农业学报,2016,(04):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
WEI Si-yu,WANG Ya-bo,SHAO Yang,et al.Influence of elevated tropospheric ozone on the bioavailability of zinc in wheat-planted soil[J].,2016,(01):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
[2]陈博阳,余彬彬,钱晓晴,等.锌和土霉素胁迫对玉米种子发芽和幼苗抗氧化酶活性的影响[J].江苏农业学报,2017,(01):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
CHEN Bo-yang,YU Bin-bin,QIAN Xiao-qing,et al.Zinc and oxytetracycline stress effects on maize germination and seedling antioxidant system[J].,2017,(01):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
[3]李汉全,张炳火,杨建远,等.Streptomyces eurocidicus JXJ 0089对铜绿微囊藻的抑制[J].江苏农业学报,2015,(05):1037.[doi:doi:10.3969/j.issn.1000-4440.2015.05.015]
LI Han-quan,ZHANG Bing-huo,YANG Jian-yuan,et al.Cyanobacteria-lytic activity of Streptomyces eurocidicus JXJ 0089 against Microcystis aeruginosa[J].,2015,(01):1037.[doi:doi:10.3969/j.issn.1000-4440.2015.05.015]
[4]沈清清,彭谦,赖泳红,等.光照条件对固定化果胶酶抑藻效应的影响[J].江苏农业学报,2018,(04):842.[doi:doi:10.3969/j.issn.1000-4440.2018.04.018]
SHEN Qing-qing,PENG Qian,LAI Yong-hong,et al.Influence of lighting conditions on the algal-inhibition effect of immobilized pectinase[J].,2018,(01):842.[doi:doi:10.3969/j.issn.1000-4440.2018.04.018]
[5]白珊,倪幸,杨瑗羽,等.不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
BAI Shan,NI Xing,YANG Yuan-yu,et al.Immobilization of soil cadmium and zinc by different raw material derived biochars[J].,2021,(01):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
[6]阮思越,何晓明,张玲,等.优化氮素调控对小麦锌积累与转运的影响[J].江苏农业学报,2021,(06):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
RUAN Si-yue,HE Xiao-ming,ZHANG Ling,et al.Effects of optimized nitrogen regulation on zinc accumulation and transport in wheat[J].,2021,(01):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
[7]罗有文,吴海涛,曹斌,等.载锌凹凸棒石黏土对犬肠道菌群和抗氧化能力的影响[J].江苏农业学报,2021,(06):1488.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]
LUO You-wen,WU Hai-tao,CAO Bin,et al.Effects of zinc-bearing palygorskite on intestinal microflora and antioxidant capability in dogs[J].,2021,(01):1488.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]