[1]张海涛,郭西亚,张杰,等.铜绿微囊藻对锌、镉胁迫的生理响应[J].江苏农业学报,2019,(01):33-41.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
 ZHANG Hai-tao,GUO Xi-ya,ZHANG Jie,et al.Physiological response of Microcystis aeruginosa to Zn2+ and Cd2+ stresses[J].,2019,(01):33-41.[doi:doi:10.3969/j.issn.1000-4440.2019.01.005]
点击复制

铜绿微囊藻对锌、镉胁迫的生理响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年01期
页码:
33-41
栏目:
遗传育种·生理生化
出版日期:
2019-02-26

文章信息/Info

Title:
Physiological response of Microcystis aeruginosa to Zn2+ and Cd2+ stresses
作者:
张海涛12郭西亚12张杰12邓建才1
(1.中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室,江苏南京210008;2.中国科学院大学,北京100049)
Author(s):
ZHANG Hai-tao12GUO Xi-ya12ZHANG Jie12DENG Jian-cai1
(1.State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
铜绿微囊藻生理响应富集能力
Keywords:
Microcystis aeruginosaZnCdphysiological responseenrichment ability
分类号:
X171.5
DOI:
doi:10.3969/j.issn.1000-4440.2019.01.005
文献标志码:
A
摘要:
为了明确藻类对重金属的耐受性和富集特征,采用室内培养法,研究铜绿微囊藻(Microcystis aeruginosa)对不同质量浓度Zn2+和Cd2+的富集能力以及对其胁迫的生理响应。结果表明,铜绿微囊藻对Zn2+、Cd2+均有一定的富集作用,而且Zn2+的富集量明显高于Cd2+。当Zn2+质量浓度为005 mg/L时,铜绿微囊藻的比生长速率最快,当Zn2+质量浓度超过005 mg/L时,铜绿微囊藻的生长受到抑制,即Zn2+对铜绿微囊藻的生长具有低质量浓度促进,高质量浓度抑制的作用。Cd2+对铜绿微囊藻的生长不具有低质量浓度促进作用,质量浓度为005 mg/L的Cd2+作用96 h后,铜绿微囊藻的生长受到明显抑制,Cd2+质量浓度越高,其对铜绿微囊藻生长的抑制作用越明显。Zn2+、Cd2+质量浓度分别为020 mg/L和015 mg/L时,连续培养24 h后,铜绿微囊藻的酯酶活性均显著升高,当Zn2+、Cd2+质量浓度分别达到020 mg/L和025 mg/L时,与对照相比,藻细胞光系统II(PSII)最大光能转化效率(Fv/Fm)显著降低。在Zn2+、Cd2+胁迫下,铜绿微囊藻的超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性以及丙二醛(MDA)含量均发生变化。
Abstract:
In order to study the tolerance and enrichment characteristics of algae to heavy metals, the enrichment ability and physiological response of Microcystis aeruginosa to different concentrations of Zn2+ and Cd2+ were investigated by using indoor culture methods. The results showed that Microcystis aeruginosa had a certain enrichment effect on Zn2+ and Cd2+, and the enrichment of Zn2+ in Microcystis aeruginosa was obviously higher than that of Cd2+. Microcystis aeruginosa grew fastest when the concentration of Zn2+ was 005 mg/L, while the growth was inhibited when the concentration of Zn2+ exceeded 005 mg/L. The low concentrations of Zn2+ could promote the growth of Microcystis aeruginosa, while high concentrations could inhibit its growth, which was called the hormesis effect. However, the growth of Microcystis aeruginosa was not promoted by low concentration of Cd2+ and was obviously inhibited after being treated with 005 mg/L Cd2+ for 96 h. With the increase of Cd2+ concentration, the inhibitory effect of Cd2+ on the growth of Microcystis aeruginosa became more and more obvious. When the concentration of Zn2+ and Cd2+ reached 020 mg/L and 015 mg/L, the esterase activity of Microcystis aeruginosa increased significantly after continuous culture for 24 hours. When the concentration of Zn2+ and Cd2+ reached 020 mg/L and 025mg/L, respectively, the Fv/Fm value was significantly decreased. The activities of superoxide dismutase(SOD) and catalase(CAT) and the content of malondialdehyde(MDA) changed under the stresses of Zn2+ and Cd2+.

参考文献/References:

[1]陈祯东,陈日钊,张紫英,等. 南宁市罗非鱼池塘表层沉积物铜、锌、氮、磷含量及其生态风险分析[J]. 南方农业学报,2018,49(9):1865-1872.
[2]PEREIRA S, MICHELETTI E, ZILLE A, et al. Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell?[J]. Microbiology, 2011, 157(2): 451-458.
[3]汪苹,胡章立. 衣藻细胞的重金属结合特性及其抗性机制[J]. 环境科学与技术, 2009, 32(1):84-89.
[4]陈镜伊,唐婉莹,尹洪斌,等. 蓝藻的生消过程对镉污染沉积物的生物有效性[J]. 江苏农业科学,2018,46(20):320-324.
[5]CHAKRABORTY N, BANERJEE A, PAL R. Biomonitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South 24-Parganas using algae as bioreagent[J]. Journal of Algal Biomass Utilization, 2011, 2(3): 27-41.
[6]吴文娟,李建宏,刘畅,等. 微囊藻水华的资源化利用: 吸附重金属离子Cu2+、Cd2+和Ni2+的实验研究[J]. 湖泊科学, 2014, 26(3): 417-422.
[7]SINGH S, PRADHAN S, RAI L C. Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory-grown Microcystis[J]. Process Biochemistry, 1998, 33(5): 495-504.
[8]NEWBY J R R, LEE L H, PEREZ J L, et al. Characterization of zinc stress response in cyanobacterium Synechococcus sp. IU 625[J]. Aquatic Toxicology, 2017, 186: 159-170.
[9]FISHER N S. On the reactivity of metals for marine phytoplankton[J]. Limnology and Oceanography, 1986, 31(2): 443-449.
[10]王伟,樊祥科,黄春贵,等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3):494-501.
[11]SU Y, LIU H, YANG J. Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from nanquan coast of Taihu lake, China[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(2): 439-443.
[12]SUMAN T Y, RAJASREE S R R, KIRUBAGARAN R. Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis[J]. Ecotoxicology and Environmental Safety, 2015, 113: 23-30.
[13]杨洪,黄志勇. 锌胁迫对小球藻抗氧化酶和类金属硫蛋白的影响[J]. 生态学报, 2012, 32(22):7117-7123.
[14]FERNANDEZ-GARCA N, MART M C, JIMENEZ A, et al. Sub-cellular distribution of glutathione in an Arabidopsis mutant (vtc1) deficient in ascorbate[J]. Journal of Plant Physiology, 2009, 166(18): 2004-2012.
[15]刘璐,闫浩,夏文彤,等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014, 34(2):478-484.
[16]XU K, LI Z K, QIU B S, et al. Different responses to high light stress of toxic and non-toxic Microcystis aeruginosa acclimated under two light intensities and zinc concentrations[J]. Toxicological & Environmental Chemistry, 2013, 95(7): 1145-1156.
[17]尹文珂,程金凤,肖婉露,等. 四尾栅藻对重金属镉胁迫的响应[J]. 农业环境科学学报, 2015, 34(4):633-638.
[18]孔繁翔,马荣华,高俊峰,等. 太湖蓝藻水华的预防、预测和预警的理论与实践[J]. 湖泊科学, 2009, 21(3):314-328.
[19]倪利晓,马艳艳,叶祥,等. 藻细胞活性及营养盐水平对铜绿微囊藻吸附镉的影响研究[J]. 环境科技, 2013, 26(3):1-4.
[20]江江,李玉成,王宁,等. 巢湖蓝藻聚集对重金属迁移释放的影响[J]. 湖泊科学, 2017, 29(3):558-566.
[21]RIPPKA R, DERUELLES J, WATERBURY J B, et al. Generic assignments, strain histories and properties of pure cultures of cyanobacteria[J]. Microbiology, 1979, 111(1): 1-61.
[22]OUYANG H L, KONG X Z, HE W, et al. Effects of five heavy metals at sub-lethal concentrations on the growth and photosynthesis of Chlorella vulgaris[J]. Chinese Science Bulletin, 2012, 57(25): 3363-3370.
[23] 欧阳慧灵,孔祥臻,何玘霜,等. Cu2+对普通小球藻的光合毒性:初始藻密度的影响[J]. 生态毒理学报, 2011, 6(5):499-506.
[24] 吴洁,陈晓娣,韩萍芳,等. 离子液体对微藻的急性毒性效应[J]. 安全与环境学报, 2016, 16(1):381-386.
[25]BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254.
[26] BEAUCHAMP C, FRIDOVICH I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry, 1971, 44(1): 276-287.
[27]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5): 867-880.
[28]王执伟,刘冬梅,张文娟,等. 溴酸盐对普通小球藻的生长以及生理特性的影响[J]. 环境科学, 2016, 37(6):2158-2163.
[29]KUMAR K S, DAHMS H U, LEE J S, et al. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence[J]. Ecotoxicology and Environmental Safety, 2014, 104(2): 51-71.
[30]VERHEYEN L, VERSIEREN L, SMOLDERS E. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions[J]. Aquatic Toxicology, 2014, 154: 80-86.
[31]SHENG P X, TING Y P, CHEN J P, et al. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms[J]. Journal of Colloid and Interface Science, 2004, 275(1): 131-141.
[32]GONZLEZ-DVILA M. The role of phytoplankton cells on the control of heavy metal concentration in seawater[J]. Marine Chemistry, 1995, 48(3/4): 215-236.
[33]DA COSTA A A, DE FRANCA F P. Cadmium uptake by Spirulina maxima: toxicity and mechanism[J]. World Journal of Microbiology and Biotechnology, 1998, 14(4): 579-581.
[34]张铁明,杜桂森,杨忠山,等. 锌对2种淡水浮游藻类增殖的影响[J]. 西北植物学报, 2006, 26(8):1722-1726.
[35]刘慧,张宇宏,张少斌,等. Cd2+胁迫对螺旋藻生长、光谱特性及藻胆蛋白质量浓度的影响[J]. 生态环境学报, 2007,16(3):767-770.
[36]KOVCˇIK J, KLEJDUS B, TORK F, et al. Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in scenedesmus quadricauda (chlorophyta, chlorophyceae)[J]. Journal of Phycology, 2011, 47(5): 1044-1049.
[37]冯政,郑新梅,刘红玲,等. 全氟辛酸对斜生栅藻细胞膜特性影响研究[J]. 生态毒理学报, 2010, 5(4):537-542.
[38]JIAO Y, OUYANG H L, JIANG Y J, et al. Effects of phosphorus stress on the photosynthetic and physiological characteristics of Chlorella vulgaris based on chlorophyll fluorescence and flow cytometric analysis[J]. Ecological Indicators, 2017, 78: 131-141.
[39]MACHADO M D, SOARES E V. Use of a fluorescence-based approach to assess short-term responses of the alga Pseudokirchneriella subcapitata to metal stress[J]. Journal of Applied Phycology, 2015, 27(2): 805-813.
[40]于洋,孔繁翔,王美林,等. 应用流式细胞技术研究铜对藻细胞膜完整性及脂酶活性的影响[J]. 应用与环境生物学报, 2006, 12(5):706-709.
[41]LAGE O M, SANSONETTY F, O'CONNOR J E, et al. Flow cytometric analysis of chronic and acute toxicity of copper(II) on the marine dinoflagellate Amphidinium carterae[J]. Cytometry, 2001, 44(3):226-235.
[42]MURCHIE E H, LAWSON T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications[J]. Journal of Experimental Botany, 2013, 64(13): 3983-3998.
[43]XU K, JUNEAU P. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc[J]. Aquatic Toxicology, 2016, 170: 251-258.
[44]PLEKHANOV S E, CHEMERIS Y K. Early toxic effects of zinc, cobalt, and cadmium on photosynthetic activity of the green alga Chlorella pyrenoidosa Chick S-39[J]. Biology Bulletin of the Russian Academy of Sciences, 2003, 30(5):506-511.
[45]COLLN J, PINTO E, PEDERSEN M, et al. Induction of oxidative stress in the red macroalga Gracilaria tenuistipitata by pollutant metals[J]. Archives of Environmental Contamination and Toxicology, 2003, 45(3): 337-342.
[46]CHOUDHARY M, JETLEY U K, KHAN M A, et al. Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5[J]. Ecotoxicology and Environmental Safety, 2007, 66(2): 204-209.

相似文献/References:

[1]魏思雨,王亚波,邵阳,等.近地层大气臭氧浓度升高对麦季土壤Zn 生物有效性的影响[J].江苏农业学报,2016,(04):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
 WEI Si-yu,WANG Ya-bo,SHAO Yang,et al.Influence of elevated tropospheric ozone on the bioavailability of zinc in wheat-planted soil[J].,2016,(01):791.[doi:10.3969/j.issn.100-4440.2016.04.013]
[2]陈博阳,余彬彬,钱晓晴,等.锌和土霉素胁迫对玉米种子发芽和幼苗抗氧化酶活性的影响[J].江苏农业学报,2017,(01):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
 CHEN Bo-yang,YU Bin-bin,QIAN Xiao-qing,et al.Zinc and oxytetracycline stress effects on maize germination and seedling antioxidant system[J].,2017,(01):13.[doi:10.3969/j.issn.1000-4440.2017.01.003]
[3]李汉全,张炳火,杨建远,等.Streptomyces eurocidicus JXJ 0089对铜绿微囊藻的抑制[J].江苏农业学报,2015,(05):1037.[doi:doi:10.3969/j.issn.1000-4440.2015.05.015]
 LI Han-quan,ZHANG Bing-huo,YANG Jian-yuan,et al.Cyanobacteria-lytic activity of Streptomyces eurocidicus JXJ 0089 against Microcystis aeruginosa[J].,2015,(01):1037.[doi:doi:10.3969/j.issn.1000-4440.2015.05.015]
[4]沈清清,彭谦,赖泳红,等.光照条件对固定化果胶酶抑藻效应的影响[J].江苏农业学报,2018,(04):842.[doi:doi:10.3969/j.issn.1000-4440.2018.04.018]
 SHEN Qing-qing,PENG Qian,LAI Yong-hong,et al.Influence of lighting conditions on the algal-inhibition effect of immobilized pectinase[J].,2018,(01):842.[doi:doi:10.3969/j.issn.1000-4440.2018.04.018]
[5]白珊,倪幸,杨瑗羽,等.不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
 BAI Shan,NI Xing,YANG Yuan-yu,et al.Immobilization of soil cadmium and zinc by different raw material derived biochars[J].,2021,(01):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
[6]阮思越,何晓明,张玲,等.优化氮素调控对小麦锌积累与转运的影响[J].江苏农业学报,2021,(06):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
 RUAN Si-yue,HE Xiao-ming,ZHANG Ling,et al.Effects of optimized nitrogen regulation on zinc accumulation and transport in wheat[J].,2021,(01):1436.[doi:doi:10.3969/j.issn.1000-4440.2021.05.010]
[7]罗有文,吴海涛,曹斌,等.载锌凹凸棒石黏土对犬肠道菌群和抗氧化能力的影响[J].江苏农业学报,2021,(06):1488.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]
 LUO You-wen,WU Hai-tao,CAO Bin,et al.Effects of zinc-bearing palygorskite on intestinal microflora and antioxidant capability in dogs[J].,2021,(01):1488.[doi:doi:10.3969/j.issn.1000-4440.2021.05.017]

备注/Memo

备注/Memo:
收稿日期:2018-04-10 基金项目:水体污染控制与治理科技重大专项(2014ZX07101-011);国家自然科学基金项目(41271213) 作者简介:张海涛(1992-),男,安徽利辛人,硕士研究生,主要从事藻类生态毒理学研究。(E-mail)htzhang1992@163.com 通讯作者:邓建才,(E-mail)jcdeng@niglas.ac.cn
更新日期/Last Update: 2019-02-27