[1]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978-983.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(05):978-983.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
点击复制

转桃PpCuZnSOD基因大豆的耐旱性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年05期
页码:
978-983
栏目:
遗传育种·生理生化
出版日期:
2018-10-25

文章信息/Info

Title:
Drought tolerance of transgenic soybean with PpCuZnSOD gene
作者:
杨艳丽1杨勇2李大红1李鸿雁1
(1.黄淮学院生物与食品工程学院,河南驻马店463000;2.黄淮学院园林中心,河南驻马店463000)
Author(s):
YANG Yan-li1YANG Yong2LI Da-hong1LI Hong-yan1
(1.School of Biotechnology and Food Engineering, Huanghuai University, Zhumadian 463000, China;2.Garden Center, Huanghuai University, Zhumadian 463000, China)
关键词:
转基因耐旱性大豆PpCuZnSOD基因
Keywords:
transgenedrought tolerancesoybeanPpCuZnSOD gene
分类号:
S565.103.53
DOI:
doi:10.3969/j.issn.1000-4440.2018.05.003
文献标志码:
A
摘要:
为探索桃(Prunus persica L.)铜/锌超氧化物歧化酶基因(PpCuZnSOD)在植物抗干旱胁迫中的作用,应用农杆菌介导法,将PpCuZnSOD基因转入大豆品种中黄13中。Southern印迹分析证实PpCuZnSOD基因已整合到大豆基因组中。定量PCR分析结果表明,转基因大豆中PpCuZnSOD表达水平均明显增加。用15% PEG4000模拟干旱胁迫时,转基因大豆种子萌发率与主根长显著高于非转基因大豆。在干旱10 d条件下,转基因大豆与非转基因大豆相比,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性增加,而丙二醛(MDA)含量下降,叶绿素含量降低较少。活性氧(ROS)染色结果显示,转基因植株在干旱胁迫下活性氧少于非转基因植株。复水后4 d,转基因大豆的成活率显著高于非转基因大豆。这些结果表明,PpCuZnSOD能提高大豆的耐旱性。
Abstract:
To explore the role of copper/zinc superoxide dismutase gene(PpCuZnSOD) in drought stress in plants, PpCuZnSOD gene from peach (Prunus persica L.) was transferred into soybean (Gycine max(L.)Merr.) by agrobacterium-mediated transformation. Integration of PpCuZnSOD gene was confirmed by southern blot analysis. The expression levels of PpCuZnSOD in transgenic plants were significantly increased via real time PCR. When the soybean seeds were treated with 15% PEG4000, the seed germination rate and main root length of transgenic soybean were significantly higher than those of non-transgenic soybean (wild type, WT) plants. Under the condition of drought stress for 10 d, the activities of SOD (superoxide dismutase), CAT(catalase)and POD (peroxidase) increased, while malondialdehyde (MDA) content decreased and chlorophyll content decreased slightly in transgenic soybean compared with those in WT. The results of reactive oxygen species (ROS) staining showed that transgenic plants had less reactive oxygen species under drought stress than those of WT. After four days of rehydration, the survival rate of transgenic soybean was significantly higher than that of WT. In conclusion, PpCuZnSOD plays on important role in enhancing the drought tolerance of soybean.

参考文献/References:

[1]GARG N, CHANDEL S. The effects of salinity on nitrogen fixation and trehalose metabolism in Mycorrhizal Cajanuscajan (L.) Millsp. plants [J]. Journal of Plant Growth Regulation, 2011, 30(4):490-503.
[2]何静丹, 文仁来, 田树云, 等. 抽雄期干旱胁迫与复水对不同玉米品种生长及产量的影响[J]. 南方农业学报,2017,48(3):408-415.
[3]沙依然·外力,李晨,葛道阔,等.干旱胁迫下水稻光合特性、冠层-空气温差及水分利用效率的变化[J].江苏农业科学,2016,44(1):86-89.
[4]SHARMA P, JHA A B, DUBEY R S, et al. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions[J]. Journal of Botany , 2012, 12(1):1-26.
[5]NEGI N P, SHRIVASTAVA D C, SHARMA V, et al. Overexpression of CuZnSOD, from Arachis hypogaea, alleviates salinity and drought stress in tobacco [J]. Plant Cell Reports, 2015, 34(7):1109-1126.
[6]WANG X, ZHANG H, GAO Y, et al. Characterization of Cu/Zn-SOD enzyme activities and gene expression in soybean under low nitrogen stress [J]. Journal of the Science of Food & Agriculture, 2016, 96(8):2692.
[7]MITTLER R, VANDERAUWERA S, GOLLERY M, et al. Reactive oxygen gene network of plants [J]. Trends in Plant Science, 2004, 9(10):490-498.
[8]HWANG C S, RHIE G E, OH J H, et al. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence [J]. Microbiology, 2002, 148(11):3705-3713.
[9]HERNNDEZ J A, ALMANSA M S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves [J]. Physiologia Plantarum, 2002, 115(2):251-257.
[10]XU J, DUAN X, YANG J, et al. Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses [J]. Plant Signaling & Behavior, 2013, 8(6):24-25.
[11]SOMMER C. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization [J]. Plant Physiology & Biochemistry, 2010, 48(9):772-777.
[12]DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress [J]. Plant Science, 1998, 135(1):1-9.
[13]GUAN Q, LIAO X, HE M, et al. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress [J]. PLoS ONE, 2017,12(10):e0186052.
[14]KWON S Y, JEONG Y J, LEE H S, et al. Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologenmediated oxidative stress [J]. Plant Cell Environ,2002, 25:873-882.
[15]TANG L, KWON S Y, KIM S H, et al. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature [J]. Plant Cell Reports, 2006, 25(12):1380-1386.
[16]SHAFI A, CHAUHAN R, GILL T, et al. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress [J]. Plant Molecular Biology, 2015, 87(6):615-631.
[17]SHIRIGA K, SHARMA R, KUMAR K, et al. Expression pattern of superoxide dismutase under drought stress in Maize [J]. International Journal of Innovative Research in Science, Engineering and Technology , 2014, 3(4):11333-11337.
[18]JASPERS P, KANGASJRVI J. Reactive oxygen species in abiotic stress signaling [J]. Physiologia Plantarum, 2010, 138(4):405-413.
[19]GUTTIKONDA S K, VALLIYODAN B, NEELAKANDAN A K, et al. Overexpression of AtDREB1D, transcription factor improves drought tolerance in soybean [J]. Molecular Biology Reports, 2014, 41(12):7995-8008.
[20]李大红,郑文娜,蒋炳伸,等. 过表达苜蓿MsDREB1基因大豆耐旱性分析[J]. 植物生理学报, 2017, 53(8):1479-1488.
[21]秦迪,赵翠兰,郑成忠,等. 转BADH基因大豆耐旱性分析[J]. 中国油料作物学报, 2015, 37(6):752-758.
[22]魏崃,王兴宇,唐晓飞,等. 过表达AtCBF4、BoWS大豆对干旱胁迫的响应[J]. 分子植物育种, 2015, 13(2):424-430.
[23]WESTGATE M E, PETERSON C M. Flower and pod development in water-deficient soybeans [Glycine max (L.) Merr.][J]. Journal of Experimental Botany, 1993, 44(258):109-117.
[24]MURRAYM G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research, 1980, 8:4321-4325.
[25]LI D H, LIU H, YANG Y L, et al. Down-regulated expression of RACK1 gene by RNA interference enhances drought tolerance in rice [J]. Rice Science, 2009, 16(1):14-20.
[26]高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006 : 211-213, 217.
[27]YAN H, JIA H, CHEN X, et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production[J]. Plant & Cell Physiology, 2014, 55(12):2060-2076.
[28]ZHANG F, ZHOU Y, ZHANG M, et al. Effects of drought stress on global gene expression profile in leaf and root samples of Dongxiang wild rice (Oryza rufipogon) [J]. Bioscience Reports, 2017, 37(3):1-11.
[29]KUDO M, KIDOKORO S, YOSHIDA T, et al. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants [J]. Plant Biotechnology Journal, 2016, 15(4):458-471. .
[30]HUI Y, QIANG L, PARK S C, et al. Overexpression of CuZnSOD, and APX, enhance salt stress tolerance in sweet potato [J]. Plant Physiology & Biochemistry, 2016, 109:20-27.
[31]TORRES M A. ROS in biotic interactions[J]. Physiologia Plantarum, 2009, 138(4):414-429.
[32]SHAFI A, CHAUHAN R, GILL T, et al. Expression of SOD and APX genes positively regulates secondary cell wall biosynthesis and promotes plant growth and yield in Arabidopsis under salt stress [J]. Plant Molecular Biology, 2015, 87(6):615-631.

相似文献/References:

[1]颜文飞,张启军,秦海龙,等.运用农杆菌介导的针刺法将外源基因转入水稻[J].江苏农业学报,2015,(04):718.[doi:10.3969/j.issn.1000-4440.2015.04.002]
 YAN Wen-fei,ZHANG Qi-jun,QIN Hai-long,et al.Transforming gene into rice through agrobacterium-mediation assisted by needle puncture[J].,2015,(05):718.[doi:10.3969/j.issn.1000-4440.2015.04.002]
[2]张杰,单宝来,田永生,等.葡萄HSP17基因的合成与功能分析[J].江苏农业学报,2017,(03):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
 ZHANG Jie,SHAN Bao-lai,TIAN Yong-sheng,et al.Synthesis and functional analysis of HSP17 gene in grape[J].,2017,(05):503.[doi:doi:10.3969/j.issn.1000-4440.2017.03.004]
[3]陈盛,王宁宁,王玉康,等.一种快速高效筛选甘蓝型油菜转化植株的方法[J].江苏农业学报,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
 CHEN Sheng,WANG Ning-ning,WANG Yu-kang,et al.A rapid and efficient approach to screening transformed plants of Brassica napus[J].,2017,(05):982.[doi:doi:10.3969/j.issn.1000-4440.2017.05.004]
[4]徐建伟,张小均,李志博,等.幼苗期大田棉花耐旱性的叶绿素荧光和光合特性辅助鉴定[J].江苏农业学报,2019,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2019.01.001]
 XU Jian-wei,ZHANG Xiao-jun,LI Zhi-bo,et al.Assistant identification of chlorophyll fluorescence and photosynthesis in cotton seedlings with drought-tolerance under field condition[J].,2019,(05):1.[doi:doi:10.3969/j.issn.1000-4440.2019.01.001]
[5]王韬远,陶冶,夏德美,等.外源喷施1-甲基环丙烯(1-MCP)对干旱胁迫下芍药幼苗生长的影响及作用机理[J].江苏农业学报,2020,(02):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]
 WANG Tao-yuan,TAO Ye,XIA De-mei,et al.Effects of spraying exogenous 1-methylcyclopropene(1-MCP) on growth of Paeonia lactiflora Pall. seedlings under drought stress and its mechanism[J].,2020,(05):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]
[6]于园,刘国强,苏圣淋,等.玉米转基因成分的检测[J].江苏农业学报,2020,(04):836.[doi:doi:10.3969/j.issn.1000-4440.2020.04.005]
 YU Yuan,LIU Guo-qiang,SU Sheng-lin,et al.Detection of transgenic ingredients in maize[J].,2020,(05):836.[doi:doi:10.3969/j.issn.1000-4440.2020.04.005]
[7]张斌.大豆转录因子基因GmbHLH130克隆及在干旱胁迫中的功能分析[J].江苏农业学报,2023,(07):1441.[doi:doi:10.3969/j.issn.1000-4440.2023.07.001]
 ZHANG Bin.Cloning and functional analysis of soybean transcription factor GmbHLH130 gene under drought stress[J].,2023,(05):1441.[doi:doi:10.3969/j.issn.1000-4440.2023.07.001]

备注/Memo

备注/Memo:
收稿日期:2018-05-03 基金项目:河南省科技计划项目(182102110305);河南省高等学校重点项目(16A210032) 作者简介:杨艳丽(1979-),女,河南驻马店人,本科,实验师,主要从事园林技术及植物生理研究开发工作。(E-mail)1654460639@qq.com 通讯作者:李鸿雁,(E-mail)1248762303@qq.com
更新日期/Last Update: 2018-11-05