[1]顾思忠,刘斌,杨兆丹.胡萝卜在微波干燥条件下的热物理性质和多孔特性[J].江苏农业学报,2018,(04):897-903.[doi:doi:10.3969/j.issn.1000-4440.2018.04.026]
 GU Si-zhong,LIU Bin,YANG Zhao-dan.Thermophysical properties and porous property analysis of carrot under microwave drying condition[J].,2018,(04):897-903.[doi:doi:10.3969/j.issn.1000-4440.2018.04.026]
点击复制

胡萝卜在微波干燥条件下的热物理性质和多孔特性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
897-903
栏目:
加工贮藏·质量安全
出版日期:
2018-08-25

文章信息/Info

Title:
Thermophysical properties and porous property analysis of carrot under microwave drying condition
作者:
顾思忠刘斌杨兆丹
(天津商业大学天津市制冷技术重点实验室,天津300134)
Author(s):
GU Si-zhongLIU BinYANG Zhao-dan
(Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, China)
关键词:
胡萝卜微波干燥热物理性质多孔介质特性温度分布
Keywords:
carrotmicrowave dryingthermal physical propertiescharacteristic of porous mediatemperature distribution
分类号:
TS255.3
DOI:
doi:10.3969/j.issn.1000-4440.2018.04.026
文献标志码:
A
摘要:
利用微波干燥试验系统,实时测量胡萝卜样品微波干燥过程中的温度和质量变化,在样品相同部位选取切片,观察不同干燥时期样品细胞微观图像。分析干燥过程中不同含水率样品的密度、导热系数、比热、热扩散率等物理性质参数的变化,并从多孔介质的角度,研究孔隙率、孔隙分形维数、孔径、比表面积等多孔特性参数在不同干燥节点(100%、85%、70%、55%、40%)的变化规律。通过改变微波加热功率,分析微波功率对样品热质传递的影响。结果表明:微波干燥过程中,胡萝卜皮层细胞形成一层致密薄膜阻碍水分迁移,细胞破损首先发生在样品内部。含水率降低至30%时,样品内部出现焦糊现象,随后中心处细胞全部塌陷。但是整个干燥过程的密度变化并不大,减小量约为5 kg/m3。导热系数总体呈现先增大后减小的趋势,在含水率为60%时达到极大值,随着含水率的降低样品内部温度更加趋向于均匀一致。随着干燥的进行,孔隙率和孔隙分形维数不断增大,孔隙变得越来越复杂。干燥过程中的温度变化具有明显的阶段性,热量传递和水分传递方向具有一致性。干燥初期,微波功率(0.6 kW、0.8 kW、1.0 kW)越大,样品温度升高至100 ℃的速度越快,此时内部温度高于表面温度,而干燥后期内外温度基本恒定,但是二者大小关系比前期复杂。
Abstract:
The system of microwave drying was used to measure the temperature and mass changes of carrot in real time during microwave drying. The slices at the same part of the sample were selected and the microscopic images of cells in different drying periods were compared. The changes of property parameters of carrot samples with different water content were analyzed in drying process, such as density, thermal conductivity, specific heat and thermal diffusivity, etc. From the perspective of porous media, the variation of porous characteristic parameters, like porosity, fractal dimension, aperture and specific surface area, was studied under different drying nodes (100%, 85%, 70%, 55%, 40%). The influence of microwave power on the heat and mass transfer of samples was analyzed by changing the microwave heating power. The results showed that cortical cells of the carrot formed a dense film which could hinder water migration during microwave drying. The broken cells first occurred inside the sample. When the water content was 30%, internal of carrot appeared the scorch. Then, all of center cells collapsed. In the whole drying process, the density did not fluctuate much, and its reduction was about 5 kg/m3 after drying. Thermal conductivity increased as the water content decreased initially and decreased afterwards. It reached the maximum when the water content was 60%. The temperature became uniform with the reduction of water content. Besides, porosity and pore fractal dimensions also increased. The internal pores became more and more complicated. In addition, the change of temperature had obvious stages during the drying process, and the transfer direction of heat and moisture was consistent. When the microwave power was set to different values: 0.6 kW, 0.8 kW, 1.0 kW, in the initial period of drying, the rate of temperature rise was proportional to the microwave power before temperature reached 100 ℃, and the internal temperature was higher than that of the surface at this stage. The internal and external temperatures were basically constant in the late period of drying, but the relationship between them was more complex than that in the initial period.

参考文献/References:

[1]于蒙杰,张学军,牟国良,等.我国热风干燥技术的应用研究进展[J].农业科技与装备,2013(8):14-16.
[2]安瑜.果蔬干燥新技术及存在的问题[J].食品工程,2013(2):9-11.
[3]GUNGOR A, TSATSARONIS G, GUNERHAN H, et al. Advanced exergoeconomic analysis of a gas engine heat pump (GEHP) for food drying processes[J]. Energy Conversion & Management, 2015, 91:132-139.
[4]林羡,邓彩玲,徐玉娟,等. 不同高跟热泵干燥条件对龙眼干燥品质的影响[J].食品科学,2014,35(4):30-34.
[5]崔莉,宋祥云,杜利平,等.黄芩红外干燥特性及动力学模型研究[J].江苏农业科学,2017,45(20):216-221.
[6]胡晗艳,胡云峰,王娜,等. 真空冷冻干燥黑大蒜粉的加工工艺[J]. 中国调味粉,2016,41(12):74-76.
[7]张秒高,张平湖,陈忠正. 真空冷冻干燥技术在茶叶加工中的研究和应用进展[J]. 安徽农业科学,2014,42(30):10679-10680.
[8]任红兵.真空冷冻干燥技术及其在中药领域的应用[J]. 装备应用与研究,2016 (20):12-21.
[9]和大奎,朱文学,于斌,等.地黄浸膏超声真空干燥特性和动力学研究[J].江苏农业科学,2017,45(13):157-164.
[10]尹晓峰,杨明金,李光林,等.稻谷薄层热风干燥工艺优化及数学模型拟合[J].食品科学,2017(8):198-205.
[11]李靖.果蔬组合干燥试验研究及设备优化[D]. 西安:陕西科技大学,2016.
[12]于静静,毕金峰,丁媛媛.不同干燥方式对红枣品质特性的影响[J]. 现代食品科技,2011,27(6):610-614.
[13]PITCHAI K, CJEN J, BIRLA S, et al. A microwave heat transfer model for a rotating multi-component meal in a domestic oven: Development and validation [J]. Journal of Food Engineering, 2014, 128: 60-71.
[14]MONTEIRO R L, CARCIOFI B A M, LAURINDO J B. A microwave multi-flash drying process for producing crispy bananas[J]. Journal of Food Engineering, 2016,178:1-11.
[15]CHAIYO K, RATTANADECHO P. Numerical analysis of heat-mass transport and pressure buildup of unsaturated porous medium in a rectangular waveguide subjected to a combined microwave and vacuum system [J]. International Journal of Heat and Mass Transfer, 2013, 65:826-844.
[16]卜晓东,沈妍,沈旭婷,等. 三维多孔介质的流动传热模拟[J]. 企业技术开发,2016,35(23):80-82.
[17]AHMADPOUR M, SIAVASHI M, DORANEHGARD M H. Numerical simulation of two-phase flow in fractured porous media using streamline simulation and IMPES methods and comparing results with a commercial software[J]. Journal of Central South University, 2016, 23(10):2630-2637.
[18]BANDMAN O. Using cellular automata for porous media simulation[J]. The Journal of Supercomputing, 2011, 57 (2):121-131.
[19]杨屹立. 甘蓝型油菜籽热风干燥传热传质研究[D]. 重庆:西南大学,2012.
[20]姜立娜. 萝卜肉质根形成性状的分子生物学基础[D]. 南京:南京农业大学,2012.
[21]徐建国,徐刚,张绪坤,等. 利用核磁共振成像技术分析胡萝卜干燥过程中内部水分传递[J]. 农业工程学报, 2013, 29(12):271-276.
[22]KERDPIBOON S, DEVAHASTIN S, KERR W L. Comparative fractal characterization of physical changes of different food products during drying[J]. Journal of Food Engineering, 2008, 83(4):570-580.
[23]张敏,钟志友,杨乐,等. 果蔬比热容的影响因素[J]. 食品科学,2011,32(11):9-13.
[24]王东生,曹磊. 混沌、分形及其应用[M]. 合肥:中国科学技术大学出版社,1995.
[25]LIU Y, CHEN L, WANG H, et al. An improved differential box-counting method to estimate fractal dimensions of gray-level images[J]. Journal of Visual Communication & Image Representation, 2014, 25(5):1102-1111.
[26]LIU Y, LIN J, CHEN K. A stable algorithm of box fractal dimension and its application in pore structure[J]. Rare Metal Materials & Engineering, 2015, 44(4):800-804.

相似文献/References:

[1]李丽丽,李臻峰,李静,等.基于气味在线检测的苦瓜微波干燥过程[J].江苏农业学报,2018,(01):179.[doi:doi:10.3969/j.issn.1000-4440.2018.01.026]
 LI Li-li,LI Zhen-feng,LI Jing,et al.The microwave drying process of balsam pear based on online flavor detection[J].,2018,(04):179.[doi:doi:10.3969/j.issn.1000-4440.2018.01.026]
[2]刘明宝,李静,何方健,等.山楂微波干燥过程中环境相对湿度的影响[J].江苏农业学报,2020,(02):487.[doi:doi:10.3969/j.issn.1000-4440.2020.02.032]
 LIU Ming-bao,LI Jing,HE Fang-jian,et al.Effect of environmental relative humidity on microwave drying process of hawthorn[J].,2020,(04):487.[doi:doi:10.3969/j.issn.1000-4440.2020.02.032]
[3]刘珊珊,段奥其,谭杉杉,等.胡萝卜开花抑制子基因DcFLC的克隆与表达模式[J].江苏农业学报,2024,(09):1731.[doi:doi:10.3969/j.issn.1000-4440.2024.09.017]
 LIU Shanshan,DUAN Aoqi,TAN Shanshan,et al.Cloning and expression profiles of flowering suppressor gene DcFLC in Daucus carota[J].,2024,(04):1731.[doi:doi:10.3969/j.issn.1000-4440.2024.09.017]

备注/Memo

备注/Memo:
收稿日期:2018-01-03 基金项目:国家自然科学基金青年项目(51706154);2017国家重点研发计划重点专项(2017YFDO401305);天津商业大学人才启动项目(R160117) 作者简介:顾思忠(1993-),男,山东邹城人,硕士研究生,主要从事制冷系统优化及节能技术研究。(E-mail)513399674@qq.com 通讯作者:刘斌,(E-mail)lbtjcu@tjcu.edu.cn
更新日期/Last Update: 2018-09-04