[1]范如芹,罗佳,张振华.复合调理剂对栽培基质性能及蔬菜生长的影响[J].江苏农业学报,2018,(04):887-896.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
 FAN Ru-qin,LUO Jia,ZHANG Zhen-hua.Effects of composite conditioner on properties of soilless conditioner and vegetable growth[J].,2018,(04):887-896.[doi:doi:10.3969/j.issn.1000-4440.2018.04.025]
点击复制

复合调理剂对栽培基质性能及蔬菜生长的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年04期
页码:
887-896
栏目:
园艺
出版日期:
2018-08-25

文章信息/Info

Title:
Effects of composite conditioner on properties of soilless conditioner and vegetable growth
作者:
范如芹12罗佳12张振华2
(1.农业部农业环境重点实验室,北京100081;2.江苏省农业科学院农业资源与环境研究所,江苏南京210014)
Author(s):
FAN Ru-qin12LUO Jia12ZHANG Zhen-hua2
(1.Key Laboratory of Agricultural Environment, Ministry of Agriculture, Beijing 100081, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
生物炭保水剂硅藻土栽培基质蔬菜
Keywords:
biocharwater absorbent polymersdiatomitecultivation substratevegetable
分类号:
S317
DOI:
doi:10.3969/j.issn.1000-4440.2018.04.025
文献标志码:
A
摘要:
以农业废弃物替代珍贵的泥炭资源成为栽培基质的主要原料是设施农业发展的必经之路。但农业废弃物原料基质普遍存在持水性差、养分保蓄能力差、容重大、易板结、孔隙性差等问题,大大限制了其应用推广。本研究以发酵床废弃垫料(SPLC)为原料的配方基质为研究对象,通过高吸水树脂(SAP)、生物炭、硅藻土以不同比例混合,配制成不同基质复合调理剂,研究调理剂在废弃垫料以不同比例替代泥炭条件下对基质性能的影响,并进一步验证不同复合调理剂对基质栽培空心菜生长的影响。结果表明,未添加调理剂情况下,随SPLC比例提高及泥炭比例的降低,配方基质持水性、总孔隙度、通气孔隙度均明显降低,而电导率则显著升高;相应地,空心菜出苗率及株高、地上和地下生物量等生长指标也逐渐降低。添加复合调理剂后,各处理基质理化性质及空心菜生长差异明显,总体而言,调理剂中SAP的添加显著提高了基质持水性,促进了空心菜出苗及生长;随生物炭添加比例的增加,配方基质孔隙度及持水量呈上升趋势,但电导率也迅速上升;随硅藻土比例的增加,基质容重逐渐增加,但对基质电导率有降低作用。各复合调理剂综合作用结果显示,0.8 g/L SAP+5%生物炭+5%硅藻土及0.8 g/L SAP+10%生物炭+10%硅藻土2个调理剂配方明显改善了配方基质各项理化性状和空心菜生长,在SPLC比例由30%增至50%,泥炭比例由30%降至10%的情况下,仍然提高了空心菜产量。说明这2个复合调理剂可以有效改善配方基质性能,有助于农业废弃物替代泥炭成为蔬菜栽培基质的原料。
Abstract:
Using agricultural wastes to replace peat as main materials for soilless substrate is the development direction for facility agriculture. However, substrates based on agricultural wastes are known for the weaknesses such as low water and fertility holding capacity, high bulk density and salinity, low air permeable ability, etc. Conditioner addition is an important way to address these problems. In this study, different proportions (30% to 60%) of spent pig litter compost (SPLC) were used to replace peat (30% to 0), and composite conditioners with different proportions of super absorbent polymer (SAP), biochar, and diatomite were used to regulate physical and chemical properties of the substrates. Emergence rate and grow indicator of water spinach grown in these substrates were also investigated. Results showed that with increasing proportion of SPLC and decreasing proportion of peat in substrate without conditioner, the water holding capacity, total and air porosity decreased and electrical conductivity(EC) increased sharply. Germination rate and growth parameters decreased accordingly. Substrate properties and plant growth greatly differed following conditioner addition. Generally, SAP addition increased water holding capacity and water spinach growth; substrate porosity and water holding capacity as well as EC increased with increasing biochar addition; bulk density increased gradually while EC decreased, with increasing diatomite addition. Physical and chemical properties and water spinach growth were distinctly improved by the addition of two composite conditioners, namely 0.8 g/L SAP+5% biochar+5% diatomite and 0.8 g/L SAP+10% biochar+10% diatomite. Yield of water spinach was still increased even when SPLC proportion was increased from 30% to 50% and peat proportion was decreased from 30% to 10%. The results indicated that these conditioners could effectively improve substrate properties and favored the replacement of peat by agricultural wastes.

参考文献/References:

[1]OSTOS J C, LPEZ-GARRIDO R, MURILLO J M. Substitution of peat for municipal solid waste- and sewage sludge-based composts in nursery growing media: Effects on growth and nutrition of the native shrub Pistacia lentiscus L.[J]. Bioresource Technology, 2008,99: 1793-1800.
[2]MEDINA E, PAREDES C, PREZ-MURCIA M D. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants [J]. Bioresource Technology, 2009,100: 4227-4232.
[3]TIAN Y, SUN X Y, LI S Y, et al. Biochar made from green waste as peat substitute in growth media for Calathea rotundifola cv. Fasciata [J]. Scientia Horticultura, 2012,143: 15-18.
[4]FAN R Q, LUO J, YAN S H, et al. Effects of biochar and super absorbent polymer on substrate properties and water spinach growth [J]. Pedosphere,2015,25(5): 737-748.
[5]范如芹,罗佳,高岩,等. 农业废弃物的基质化利用研究进展[J]. 江苏农业学报, 2014,30(2):442-448.
[6]刘超杰,郭世荣,王长义,等. 混配醋糟复合基质对辣椒幼苗生长的影响[J]. 园艺学报,2010,37(4):559-566.
[7]范如芹,罗佳,刘海琴,等.淀粉基高吸水性树脂对基质理化性质及小青菜生长的影响[J]. 南京农业大学学报,2015,38(4): 617-623.
[8]DEENIK J L, MCCLELLAN T, UEHARA G, et al. Charcoal volatile matter content influences plant growth and soil nitrogen transformations [J]. Soil Science Society of America Journal, 2010,74: 1259-1270.
[9]高敬尧,王宏燕,许毛毛,等.生物炭施入对农田土壤及作物生长影响的研究进展[J].江苏农业科学,2016,44(10):10-15.
[10]WANG Y T, BLANCHARD M, LOPEZ R. Greenhouse grower [J]. Willoughby, 2005,23: 70.
[11]苏育炜,杨志军,周永章.硅藻土对重金属离子的吸附作用及其用于环境重金属污染修复的研究评述[J]. 中山大学研究生学刊, 2007,28(1): 94-101.
[12]李邵,薛绪掌,郭文善,等.硅藻土基质配方对盆栽观赏辣椒生长的影响[J].北方园艺,2008(11): 1-4.
[13]STEINER C, BLUM W E H, ZECH W. Long term effects of manure, charcoal, and mineral: fertilization on crop production and fertility on a highly weathered central amazonian upland soil [J]. Plant Soil, 2007,291: 275-290.
[14]张伟明,孟军,王嘉宇,等.生物炭对水稻根系形态与生理特性及产量的影响[J].作物学报,2013,39(8): 1445-1451.
[15]LUO J, FAN R Q, WANG T, et al. Evaluation of spent pig litter compost as a peat substitute in soilless growth media [J]. Biological Agriculture and Horticulture, 2015,31(4):219-229.
[16]BUSSCHER W J, NOVAK J M, EVANS D E, et al. Influence of pecan biochar on physical properties of a Norfolk loamy sand [J]. Soil Science, 2010,175: 10-14.
[17]NOVAK J M, BUSSCHER W J, WATTS D W. Biochars impact on soil-moisture storage in an Ultisol and two Aridisols [J]. Soil Science, 2012,177: 310-320.
[18]ROGOVSKA N, LAIRD D A, RATHKE S J. Biochar impact on Midwestern Mollisols and maize nutrient availability [J]. Geoderma, 2014,230: 340-347.
[19]ABAD M, NOGUERA P, BURS S. National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain [J]. Bioresource Technology, 2001,77: 197-200.
[20]BELYAEVA O N, HAYNES R J. Comparison of the effects of conventional organic amendments and biochar on the chemical, physical and microbial properties of coal fly ash as a plant growth medium [J]. Environmental Earth Sciences, 2012,66: 1987-1997.
[21]ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil, 2010,337: 1-18.
[22] PETERSON S C, JACKSON M A. Simplifying pyrolysis: using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media [J]. Industrial Crops and Products, 2014,53: 228-235.
[23]YAMATO M, OKIMORI Y, WIBOWO I F, et al. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indone-sia [J]. Soil Science and Plant Nutrition, 2006,52: 489-495.
[24]EL-HADY O A, EL-KADER A A A, SHAFI A M. Physico-bio-chemical properties of sandy soil conditioned with acrylamide hydrogels after cucumber plantation [J]. Australian Journal Basic Applied Science, 2009,3: 3145-3151.
[25]LIU F C, MA H L, XING S J, et al. Effects of super-absorbent polymer on dry matter accumulation and nutrient uptake of Pinus pinaster container seedlings [J]. Journal of Forest Research, 2013,18: 220-227.
[26]FAN R Q, LUO J, YAN S H, et al. Use of Water hyacinth (Eichhornia crassipes) compost as a peat substitute in soilless growth media[J]. Compost Science and Utilization, 2015,23: 237-247.
[27]JAYASINGHE G Y, ARACHCHI D L, TOKASHIKI Y. Evaluation of containerized substrates developed from cattle manure compost and synthetic aggregates for ornamental plant production as a peat alternative [J]. Resources, Conservation and Recycling, 2010,54: 1412-1418.
[28]LIANG B, LEHMANN J, SOLOMON D. Black carbon increases cation exchange capacity in soils [J]. Soil Science Society of America Journal, 2006,70: 1719-1730.
[29]RONDON M A, LEHMANN J, RAMíREZ J. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions [J]. Biology and Fertility of Soils, 2007,43: 699-708.
[30]ZHU Q H, PENG X H, HUANG T Q. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils [J]. Pedosphere, 2014,24: 699-708.
[31]岳天敬.茄子穴盘育苗基质及其育苗效果的研究[D].长春:吉林农业大学,2005.
[32]VACCARI F P, BARONTI S, LUGATO E. Biochar as a strategy to sequester carbon and increase yield in durum wheat [J]. European Journal of Agronomy, 2011,34: 231-238.
[33]ABEDI-KOUPAI J, SOHRAB F, SWARBRICK G. Evaluation of hydrogel application on soil water retention characteristics [J]. Journal of Plant Nutrition, 2008,31: 317-331.

相似文献/References:

[1]兰 天,张 辉,刘 源,等.玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J].江苏农业学报,2016,(02):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
 LAN Tian,ZHANG Hui,LIU Yuan,et al.Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J].,2016,(04):368.[doi:10.3969/j.issn.1000-4440.2016.02.021]
[2]周运来,张振华,范如芹,等.秸秆还田方式对水稻田土壤理化性质及水稻产量的影响[J].江苏农业学报,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
 ZHOU Yun-lai,ZHANG Zhen-hua,FAN Ru-qin,et al.Effects of straw-returning modes on paddy soil properties and rice yield[J].,2016,(04):786.[doi:10.3969/j.issn.100-4440.2016.04.012]
[3]刘杰,韩士群,齐建华,等.生物碳含量对底泥活化原位脱氮及微生物活性的影响[J].江苏农业学报,2016,(01):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
 LIU Jie,HAN Shi-qun,QI Jian-hua,et al.Influence of biochar content on in-situ denitrification of sediment and microbial activity[J].,2016,(04):106.[doi:10.3969/j.issn.1000-4440.2016.01.016 ]
[4]乔光,田田,洪怡,等.生物炭对玛瑙红樱桃生长、果实品质及土壤矿质元素的影响[J].江苏农业学报,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
 QIAO Guang,TIAN Tian,HONG Yi,et al.Effects of biochar on growth and fruit quality of Prunus pseudocerasu Manaohong and mineral element contents in soil[J].,2017,(04):904.[doi:doi:10.3969/j.issn.1000-4440.2017.04.027]
[5]尹微琴,孟莉蓉,郁彬琦,等.垫料生物炭对土壤镉的钝化作用[J].江苏农业学报,2018,(01):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
 YIN Wei-qin,MENG Li-rong,YU Bin-qi,et al.Passivation of Cd in soil by bedding materials derived-biochar[J].,2018,(04):62.[doi:doi:10.3969/j.issn.1000-4440.2018.01.009]
[6]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[7]范如芹,周运来,李赟,等.秸秆发酵还田提升土壤腐殖质含量与品质[J].江苏农业学报,2019,(05):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
 FAN Ru-qin,ZHOU Yun-lai,LI Yun,et al.Straw fermentation incorporation improves soil humus content and quality[J].,2019,(04):1095.[doi:doi:10.3969/j.issn.1000-4440.2019.05.014]
[8]张晟,张徐洁,赵远,等.不同温度制备的水稻秸秆生物炭对稻田土壤固碳减排及微生物群落结构的影响[J].江苏农业学报,2019,(05):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
 ZHANG Sheng,ZHANG Xu-jie,ZHAO Yuan,et al.Effects of rice straw biochar prepared at different pyrolysis temperatures on carbon sequestration and mitigation and microbial community structure in paddy soil[J].,2019,(04):1102.[doi:doi:10.3969/j.issn.1000-4440.2019.05.015]
[9]涂保华,胡茜,张艺,等.基于不同类型秸秆制备的生物炭对稻田土壤温室气体排放的影响[J].江苏农业学报,2019,(06):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
 TU Bao-hua,HU Qian,ZHANG Yi,et al.Effects of biochar based on different types of straw on greenhouse gas emission from paddy soil[J].,2019,(04):1374.[doi:doi:10.3969/j.issn.1000-4440.2019.06.015]
[10]李佳,邓钧尹,周伟,等.生物炭与硝化抑制剂对菜地综合温室效应的影响[J].江苏农业学报,2020,(05):1205.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]
 LI Jia,DENG Jun-yin,ZHOU Wei,et al.Effects of biochar and nitrification inhibitor on the global warming potentials in vegetable field[J].,2020,(04):1205.[doi:doi:10.3969/j.issn.1000-4440.2020.05.018]

备注/Memo

备注/Memo:
收稿日期:2017-10-18 基金项目:农业部农业环境重点实验室开放基金项目;江苏省自然科学基金项目(BK20161379);江苏省农业科技自主创新基金项目[CX(17)3019] 作者简介:范如芹(1984-),女,山东沂南人,博士,助理研究员,主要研究方向为无土栽培基质的配方研究。(Tel)025-84390787;(E-mail)fanruqin2007@126.com。罗佳为共同第一作者。 通讯作者:张振华,(Tel)025-84391207;(E-mail)zhenhuaz70@hotmail.com
更新日期/Last Update: 2018-09-04