[1]刘国锋,徐跑,吴霆,等.中国水产养殖环境氮磷污染现状及未来发展思路[J].江苏农业学报,2018,(01):225-233.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
 LIU Guo-feng,XU Pao,WU Ting,et al.Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy[J].,2018,(01):225-233.[doi:doi:10.3969/j.issn.1000-4440.2018.01.033]
点击复制

中国水产养殖环境氮磷污染现状及未来发展思路()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2018年01期
页码:
225-233
栏目:
综述
出版日期:
2018-02-25

文章信息/Info

Title:
Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy
作者:
刘国锋1徐跑1吴霆2徐增洪1徐刚春1
(1.中国水产科学研究院淡水渔业研究中心,农业部淡水渔业和种质资源利用重点实验室,江苏无锡214081;2.宝应县水产技术指导站,江苏宝应225800)
Author(s):
LIU Guo-feng1XU Pao1WU Ting2XU Zeng-hong1XU Gang-chun1
(1.Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Wuxi 214081, China;2.Fisheries Technical Guidance Station of Baoying County,
关键词:
水产养殖污染物水环境水质净化养殖模式
Keywords:
aquaculturepollutantswater environmentwater purificationaquaculture model
分类号:
S9
DOI:
doi:10.3969/j.issn.1000-4440.2018.01.033
文献标志码:
A
摘要:
中国水产养殖业发展迅速,但受土地、环境、技术和人工等资源的限制,目前已经到了发展的瓶颈期。本研究总结过去近40年来水产养殖业快速发展带来的水环境氮磷污染负荷和环境效应,以及相应的养殖水体治理措施,提出了新型水产养殖模式的优势。未来水产养殖业在“提质增效、减量增收、绿色发展、富裕渔民”的总目标下,必须转变生产方式,调整生产结构,通过持续深化渔业供给侧结构性改革,从苗种、饲料、技术、装备、机制和生产模式等方面着手,提高水产养殖的技术水平,提升渔民增收致富的能力和水产品品质,为中国水产养殖业的可持续发展奠定坚实的基础。
Abstract:
Aquaculture industry has been developed rapidly in China, but it is stepping into the bottleneck period because of the restriction by natural resources such as land, environment, technology and artificial resources. This study summarized the water environmental pollution load and the environmental effect in the past 40 years, and put forward some corresponding measures of aquaculture water treatment, and also pointed out the advantages of the new aquaculture mode. To ensure the overall goal of improving quality and effectiveness, reducing yield and increasing income, green development, enriching fishermen, the mode and structure of production must be changed and adjusted. To lay a solid foundation for the sustainable and healthy development of aquaculture in China, we should improve aquaculture technology from the aspects of seed, feed, technology, equipment, mechanism and the mode of production, increase the ability of fishermen’s getting rich and improve the quality of aquatic products by the continuous deepening structural reform of fishery supply-side.

参考文献/References:

[1]农业部渔业局. 中国渔业统计年鉴[M].北京:中国农业出版社,2014: 1-47.
[2]李诺. 论水产养殖发展中的问题和今后研究的重点[J]. 齐鲁渔业, 1995(5):18-20.
[3]农业部渔业局. 中国渔业统计年鉴[M].北京:中国农业出版社,2016: 1-52.
[4]赵安芳,刘瑞芳. 水产养殖对水环境的影响与污染控制对策[J]. 平顶山工学院学报, 2003, 12(4):15-17.
[5]LAI H T, HOU J H, SU C I, et al. Effects of chloramphenicol, florfenicol, and thiamphenicol on growth of algae Chlorella pyrenoidosa, Isochrysis galbana , and Tetraselmis chui [J]. Ecotoxicology and Environmental Safety, 2009, 72(2): 329-334.
[6]MARINHO-SORIANO E, NUNES S O, CARNEIRO M A A, et al. Nutrients' removal from aquaculture wastewater using the macroalgae Gracilaria birdiae[J]. Biomass and Bioenergy, 2009, 33(2): 327-331.
[7]张秋卓,李华,王娟,等. 生态农业园区水产养殖排水水生植物组合净化技术效果评估[J]. 农业环境科学学报, 2013, 32(6):1253-1260.
[8]吴伟,范立民. 水产养殖环境的污染及其控制对策[J]. 中国农业科技导报, 2014, 16(2):26-34.
[9]农业部渔业局养殖课题组. 我国主要水产养殖方式研究[J]. 中国水产, 2006(2):11-13.
[10]刘长发,綦志仁,何洁,等. 环境友好的水产养殖业——零污水排放循环水产养殖系统[J]. 大连水产学院学报, 2002, 17(3):220-226.
[11]闵继胜,孔祥智. 我国农业面源污染问题的研究进展[J]. 华中农业大学学报(社会科学版), 2016(2):59-66.
[12]高健,朱善国. 我国水产养殖业产业结构现状与发展机遇[J]. 中国渔业经济, 2003(4):32-33.
[13]陈东兴,杨超,华雪铭,等. 3种虾类养殖池塘污染强度及氮磷营养物质收支研究[J]. 河南农业科学, 2013, 42(8):132-136.
[14]黄文钰,许朋柱,范成新. 网围养殖对骆马湖水体富营养化的影响[J].农村生态环境, 2002, 18(1):22-25.
[15]孙云飞,王芳,刘峰,等. 草鱼与鲢、鲤不同混养模式系统的氮磷收支[J]. 中国水产科学, 2015, 22(3):450-459.
[16]BRAATEN B, JAN A, ERVIK A, et al. Pollution problems on Norwegian fish farms [J]. Aquaculture Ireland, 1983, 26: 1-12.
[17]赵安芳,刘瑞芳,温琰茂. 不同类型水产养殖对水环境影响的差异及清洁生产探讨[J]. 环境污染与防治, 2003, 25(6):362-364.
[18]计新丽,林燕棠,许忠能,等. 海水养殖自身污染机制及其对环境的影响[J]. 海洋环境科学, 2000, 19(4):66-71.
[19]李绪兴. 水产养殖与农业面源污染研究[J]. 安徽农学通报, 2007, 13(11):61-67.
[20]KASPAR H F, GILLESPIE P A, BOYER I C, et al. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marlborough Sounds, New Zealand[J]. Marine Biology, 1985, 85(2): 127-136.
[21]马从丽. 水产养殖对渔业水域环境带来的影响与应对策略[J]. 科技创新导报, 2016(20):79-80.
[22]杨庆霄,蒋岳文,张昕阳,等. 虾塘残饵腐解对养殖环境影响的研究Ⅰ. 虾塘底层残饵腐解对水质环境的影响[J]. 海洋环境科学, 1999, 18(2): 11-15.
[23]安鑫龙,周启星. 水产养殖自身污染及其生物修复技术[J]. 环境污染治理技术与设备,2006, 7(9): 1-6.
[24]戴修赢,蔡春芳,徐升宝,等. 饵料结构对河蟹养殖池塘氮、磷收支和污染强度的影响[J]. 水生态学杂志, 2010, 3(3):52-56.
[25]李纯厚,黄洪辉,林钦,等. 海水对虾池塘养殖污染物环境负荷量的研究[J]. 农业环境科学学报, 2004, 23(3):545-550.
[26]李金亮,陈雪芬,赖秋明,等. 凡纳滨对虾高位池养殖氮、磷收支研究及养殖效果分析[J]. 南方水产科学, 2010, 6(5):13-20.
[27]CASILLAS-HERNNDEZ R, MAGALLN-BARAJAS F, PORTILLO-CLARCK G, et al. Nutrient mass balances in semi-intensive shrimp ponds from Sonora, Mexico using two feeding strategies: trays and mechanical dispersal[J]. Aquaculture, 2006, 258(1): 289-298.
[28]ALABASTER J S. Report of the EIFAC workshop of fish farm effluent[R].Rome: FAO, 1982.
[29]杨逸萍,王增焕,孙建,等.精养虾池主要水化学因子变化规律和氮的收支[J].海洋科学, 1999(1): 15-17.
[30]RIISE J C, ROOS N. Benthic metabolism and the effects of bioturbation in a fertilised polyculture fish pond in northeast Thailand[J]. Aquaculture, 1997, 150: 45-62.
[31]黄洪辉,林钦,贾晓平,等. 海水鱼类网箱养殖场有机污染季节动态与养殖容量限制关系[J]. 集美大学学报, 2003, 8(2): 101-105.
[32]王亚南,王保军,戴欣,等. 近海养虾场底泥中产芽孢细菌的生态特征[J].应用与环境生物学报,2004, 10(4):484-488.
[33]YOKOYAMA H, ABO K, ISHIHI Y. Quantifying aquaculture-derived organic matter in the sediment in and around a coastal fish farm using stable carbon and nitrogen isotope ratios[J]. Aquaculture, 2006, 254(1): 411-425.
[34]罗琳,舒廷飞,温琰茂. 水产养殖对近海生态环境的影响[J]. 水产科学, 2002, 21(3): 28-30.
[35]SMITH V H, TILMAN G D, NEKOLA J C. Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems[J]. Environmental Pollution, 1999, 100(1): 179-196.
[36]TIMMONS M B, EBELING J M, WHEATON F W, et al. Recirculating aquaculture systems[M ]. 2nd ed. New York: Cayuga Aqua Ventures, 2002.
[37]李秀辰,张国琛,聂丹丹,等. 水产养殖固体废弃物减量化与资源化利用[J]. 水产科学, 2007, 26(5):300-302.
[38]陈祖锋,郑爱榕. 海水养殖自身污染及污染负荷估算[J].厦门大学学报, 2004, 43(增):258-262.
[39]崔毅,陈碧鹃,陈聚法.黄渤海海水自身污染的评估[J].应用生态学报, 2005, 16(1): 180-185.
[40]RICHARD M, ARCHAMBAULT P, THOUZEAU G, et al. Influence of suspended mussel lines on the biogeochemical fluxes in adjacent water in the les-de-la-Madeleine (Quebec, Canada)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(6): 1198-1213.
[41]MESNAGE V, OGIER S, BALLY G, et al. Nutrient dynamics at the sediment-water interface in a Mediterranean lagoon (Thau, France): influence of biodeposition by shellfish farming activities[J]. Marine Environmental Research, 2007, 63(3): 257-277.
[42]RICHARD M, ARCHAMBAULT P, THOUZEAU G, et al. Summer influence of 1 and 2 yr old mussel cultures on benthic fluxes in Grande-Entrée lagoon, les-de-la-Madeleine (Québec, Canada)[J]. Marine Ecology Progress Series, 2007, 338: 131-143.
[43]PORTER E T, OWENS M S, CORNWELL J C. Effect of sediment manipulation on the biogeochemistry of experimental sediment systems[J]. Journal of Coastal Research, 2006, 22(6): 1539-1551.
[44]郁桐炳,沈丽红. 池塘淤泥对水中氮营养盐影响的初步研究[J]. 海洋湖沼通报, 2006(1):82-85.
[45]周劲风,温琰茂,李耀初. 养殖池塘底泥-水界面营养盐扩散的室内模拟研究:Ⅰ氮的扩散[J]. 农业环境科学学报, 2006, 25(3):786-791.
[46]刘华丽,曹秀云,宋春雷,等. 水产养殖池塘沉积物有机质富集的环境效应与修复策略[J]. 水生态学杂志, 2011, 32(6):130-134.
[47]RAM N M, ZUR O, AVNIMELECH Y. Microbial changes occurring at the sediment-water interface in an intensively stocked and fed fish pond[J]. Aquaculture, 1982, 27(1): 63-72.
[48]刘国才,李德尚,董双林,等. 对虾综合养殖生态系底泥细菌的数量动态[J]. 应用生态学报, 2000, 11(1):138-140.
[49]AVNIMELECH Y, RITVO G. Shrimp and fish pond soils: processes and management[J]. Aquaculture, 2003, 220(1): 549-567.
[50]王鸿泰,胡德高. 池塘中亚硝酸盐对草鱼种的毒害及防治[J]. 水产学报, 1989, 13(3): 207-214.
[51]李纯厚,王学锋,王晓伟,等. 中国海水养殖环境质量及其生态修复技术研究进展[J]. 农业环境科学学报, 2006, 25:310-315.
[52]李建,姜令绪,王文琪,等. 氨氮和硫化氢对日本对虾幼体的毒性影响[J]. 上海水产大学学报, 2007, 16(1):22-27.
[53]叶俊. 亚硝酸盐急性胁迫对草鱼血液生理生化指标和非特异性免疫性能的影响[D]. 武汉:华中农业大学, 2013.
[54]龚志军,谢平,唐汇涓,等. 水体富营养化对大型底栖动物群落结构及多样性的影响[J]. 水生生物学报, 2001, 25(3):210-216.
[55]尚媛媛,潘纲,代立春,等. 改性当地土壤技术修复富营养化水体综合效果研究:Ⅱ.底栖动物群落结构和多样性的响应[J]. 湖泊科学, 2013, 25(1):9-15.
[56]MARINHO-SORIANO E, NUNES S O, CARNEIRO M A A, et al. Nutrients’ removal from aquaculture wastewater using the macroalgae Gracilaria birdiae[J]. Biomass and Bioenergy, 2009, 33(2): 327-331.
[57]孟睿,何连生,胡翔,等. 生态修复技术处理水产养殖废水[J]. 中国水产, 2008, 395(10):46-47.
[58]BOLEY A, MLLER W R, HAIDER G. Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems[J]. Aquacultural Engineering, 2000, 22(1): 75-85.
[59]KIOUSSIS D R, WHEATON F W, KOFINAS P. Reactive nitrogen and phosphorus removal from aquaculture wastewater effluents using polymer hydrogels[J]. Aquacultural Engineering, 2000, 23(4): 315-332.
[60]吴伟,胡庚东,金兰仙,等. 浮床植物系统对池塘水体微生物的动态影响[J]. 中国环境科学, 2008, 28(9):791-795.
[61]李今,吕田,华江环. 人工浮床水培空心菜生长特性及其在养殖废水净化中的应用[J]. 湖南师范大学自然科学学报, 2014, 37(2):22-27.
[62]廖杰,徐熙安,刘玉洪,等. 水生植物滤床深度处理养殖废水过程中抗生素与抗性基因的响应研究[J]. 环境科学学报, 2015, 35(8):2464-2470.
[63]吴伟,陈家长,胡庚东,等. 利用人工基质构建固定化微生物膜对池塘养殖水体的原位修复[J]. 农业环境科学学报, 2008, 27(4):1501-1507.
[64]陈重军,张蕊,向坤,等. 生物过滤和蔬菜浮床组合系统对温室甲鱼废水的处理效果[J]. 应用生态学报, 2014, 25(8):2390-2396.
[65]谢小龙,吴振斌,徐栋,等. 复合垂直流人工湿地处理养殖废水的TSS动态研究[J]. 农业环境科学学报, 2008, 27(1):312-317.
[66]苗莹,沈志强,周岳溪,等. 功能分区型人工湿地处理养殖废水厌氧消化液的性能[J]. 环境科学研究, 2016, 29(7):1075-1082.
[67]SUMMERFELT S T, ADLER P R, GLENN D M, et al. Aquaculture sludge removal and stabilization within created wetlands[J]. Aquacultural Engineering, 1999, 19(2): 81-92.
[68]陈春云,庄源益,方圣琼. 小球藻对养殖废水中N、P的去除研究[J]. 海洋环境科学, 2009, 28(1):9-11.
[69]龚宏伟,徐盘英,贾文方,等. 循环水养蟹之尾水净化技术初探[J]. 水产养殖, 2010, 31(2):1-3.
[70]张少军,周毅,张延青,等. 滤食性双壳贝类对工厂化养殖废水中悬浮物的生物滤除研究[J]. 农业环境科学学报, 2010, 29(2):363-367.
[71]贾建三. 全球水产养殖发展:现状、趋势和挑战[R]. 厦门:2016全球水产养殖论坛,2016.
[72]于康震. 于康震副部长在全国渔业渔政工作会议上的讲话[EB/OL]. (2017-01-18)[2017-05-08].http://www.moa.gov.cn/govpublic/ YYJ/201701/t20170122_5462 231.htm.
[73]周恩华. 开创中国水产养殖业新时代——低碳高效池塘循环流水养鱼技术[R]. 厦门:全球水产养殖论坛,2016.

相似文献/References:

[1]冯国富,卢胜涛,陈明,等.基于自注意力机制和改进的K-BiLSTM的水产养殖水体溶解氧含量预测模型[J].江苏农业学报,2024,(03):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]
 FENG Guo-fu,LU Sheng-tao,CHEN Ming,et al.Prediction model of dissolved oxygen content in aquaculture water based on self-attention mechanism and improved K-BiLSTM[J].,2024,(01):490.[doi:doi:10.3969/j.issn.1000-4440.2024.03.011]
[2]唐毅,徐全,杜彬,等.基于SARIMA-VMD-LSSVM的水产养殖溶解氧质量浓度预测[J].江苏农业学报,2024,(08):1473.[doi:doi:10.3969/j.issn.1000-4440.2024.08.012]
 TANG Yi,XU Quan,DU Bin,et al.Prediction of dissolved oxygen mass concentration in aquaculture based on SARIMA-VMD-LSSVM[J].,2024,(01):1473.[doi:doi:10.3969/j.issn.1000-4440.2024.08.012]

备注/Memo

备注/Memo:
收稿日期:2017-07-09 基金项目:江苏省农业科技自主创新基金项目[CX(16)1004];江苏省水产三新工程项目(D2016-18、 Y2016-11) 作者简介:刘国锋(1979-),男,河南驻马店人,博士,副研究员,主要从事水环境生态及污染生态治理研究。(E-mail)308390036@qq.com 通讯作者:徐跑,(E-mail)xup@ffrc.cn
更新日期/Last Update: 2018-03-06