参考文献/References:
[1]THE SCIENTIFIC ASSESSMENT PANELF THE MONTREAL PROTOCOL ON SUBSTANCES THAT DEPLETE THE OZONE LAYER. Final of UNEP/WMO scientific assessment of ozone depletion[R]. Nairobi, UNEP: 2002.
[2]MADRONICH S,MC KENZIE R L, BJRN L O,et al. Changes in biologically-active ultraviolet radiation reaching the Earth’s surface[J]. Journal of Photochemistry and Photobiology B: Biology,1998,46(1-3): 5-19.
[3]MOHAMMED A R, TARPLEY L. Morphological and physiological responses of nine southern U.S.rice cultivars differing in their tolerance to enhanced ultraviolet-B radiation[J]. Environmental and Experimental Botany, 2011, 70: 174-184.
[4]王伟,王岩,梁变变,等. 初花期喷镧对UV-B辐射增强下紫花苜蓿光合及荧光特性的影响[J]. 中国农业气象,2017,38(4):230-239.
[5]李俊,杨玉皎,王文丽,等. UV-B辐射增强对马铃薯叶片结构及光合参数的影响[J]. 生态学报,2017,8(16):1-14.
[6]韩艳,韩晨光,崔荣华,等. 外源水杨酸对UV-B增强下花生叶片光合特性的影响[J]. 中国农业气象,2016,37(4):437-444.
[7]张令瑄,谢婷婷,王瑾,等. 大田条件下UV-B辐射增强对大豆根际土壤相关指标的影响[J]. 江苏农业学报,2016,32(1):118-122.
[8]MOHAMMED A R, ROUNDS E W, TARPLEY L. Response of rice (Oryza sativa L.) tillering to sub-ambient levels of ultraviolet-B radiation[J]. Journal of Agronomy and Crop Science, 2007, 193(5): 324-335.
[9]FENG H, AN L, CHEN T, et al. The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ 13 C) of two soybean cultivars ( Glycine max ) under field conditions[J]. Environmental & Experimental Botany, 2003, 49(1):1-8.
[10]祁虹,段留生,王树林,等. 全生育期UV-B辐射增强对棉花生长及光合作用的影响[J]. 中国生态农业学报,2017,25(5):708-719.
[11]吕志伟,张令瑄,王瑾,等. 田间条件下UV-B辐射增强对大豆生长及光合特性的影响[J]. 河南农业科学,2016,45(1):42-45.
[12]贾国涛,顾会战,许自成,等. 作物硅素营养研究进展[J]. 山东农业科学,2016,48(5):153-158.
[13]KANG J, ZHAO W, ZHU X. Silicon improves photosynthesis and strengthens enzyme activities in the C3 succulent xerophyte Zygophyllumxanthoxylum under drought stress[J]. Journal of Plant Physiology, 2016, 199:76-86.
[14]华海霞. 4种植物对硅的吸收动力学[J]. 江苏农业科学,2015,43(11):440-442.
[15]刘景凯,刘世琦,冯磊,等. 硅对青蒜苗生长、光合特性及品质的影响[J]. 植物营养与肥料学报,2014,20(4):989-997.
[16]张国芹,牟建梅,何玲莉,等. 氮硅配施对不结球白菜养分吸收及产量和品质的影响[J]. 江苏农业学报,2016,32(5):1128-1133.
[17]TAMAI K, MA J F. Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant[J]. Plant and Soil, 2008, 307(1/2): 21-27.
[18]柯用春,曹明,杨小锋,等. 喷施不同浓度有机硅肥对热带地区甜瓜产量和品质的影响[J]. 南方农业学报,2015,46(1):53-57.
[19]于立河,高聚林. 硅对小麦产量与籽粒品质的影响[J]. 麦类作物学报,2012,32(3):469-473.
[20]张黛静,马建辉,杨淑芳,等. 硅对铜胁迫下小麦幼根细胞超微结构的影响[J]. 应用生态学报, 2014,25(8):2385-2389.
[21]李冬香,李光德,张华,等. 硅作用下镉对小麦幼苗生理生化指标的影响研究[J]. 中国农学通报,2013,44(36):84-90.
[22]宁东峰,梁永超. 硅调节植物抗病性的机理:进展与展望[J]. 植物营养与肥料学报,2014,20(5):1280-1287.
[23]BALAKHNINA T, BORKOWSKA A. Effects of silicon on plant resistance to environmental stresses: review[J]. International Agrophysics, 2013, 27(2):225-232.
[24]王龙俊,陈荣振,朱新开,等. 江苏省小麦品质区划研究初报[J]. 江苏农业科学,2002(2):15-18.
[25]蔡锡安,夏汉平,彭少麟. 增强UV-B辐射对植物的影响[J]. 生态环境, 2007(3):1044-1052.
[26]FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
[27]娄运生,黄岩,李永秀,等. UV-B辐射增强对不同大麦品种生理特性的影响[J]. 生态与农村环境学报, 2011,27(4): 51-55.
[28]郑有飞,徐卫民,吴荣军,等. 地表臭氧浓度增加和UV-B辐射增强及其复合处理对大豆光合特性的影响[J]. 生态学报, 2012, 32(8): 2515-2524.
[29]郑有飞,张金恩,吴荣军,等. UV-B辐射增强与O3胁迫对冬小麦光合特征的影响[J]. 环境科学, 2011, 32(10): 3023-3032.
[30]张莉娜,安黎哲,冯虎元. 增强UV-B辐射和干旱对春小麦光合作用及其生长的影响[J]. 西北植物学报, 2010, 30(5): 981-986.
[31]LI W B, SHI X H, WANG H, et al. Effects of silicon on rice leaves resistance to ultraviolet-B[J]. Acta Bot Sin, 2004, 46(6): 691-697.
[32]高玉凤,焦峰,沈巧梅. 水稻硅营养与硅肥应用效果研究进展[J]. 中国农学通报, 2009, 25(16): 156-160.
[33]陈明灿,王贺正,姚孚荣,等. 硅对小麦幼苗生长及部分生理指标的影响[J]. 广东农业科学, 2014,41( 21):7-10.
[34]吴蕾,娄运生,孟艳,等. UV-B增强下施硅对水稻抽穗期生理特性日变化的影响[J]. 应用生态学报,2015,26(1):32-38.
[35]娄运生,韩艳,刘朝阳,等. UV-B增强下施硅对大麦抽穗期光合和蒸腾生理日变化的影响[J]. 中国农业气象, 2013,34(6): 668-672.
[36]苗秀莲,刘传栋,郭彦,等. UV-B辐射增强及CO2浓度升高对水稻产量及品质的影响[J]. 作物杂志,2015(1):138-142.
[37]丁燕芳,梁永超,朱佳,等. 硅对干旱胁迫下小麦幼苗生长及光合参数的影响[J]. 植物营养与肥料学报, 2007, 13(3): 471-478.
[38]宫海军,陈坤明,陈国仓,等. 硅对小麦生长及其抗氧化酶系统的影响[J]. 土壤通报, 2003,34(1): 55-57.
[39]郭彬,娄运生,梁永超,等. 氮硅肥配施对水稻生长、产量及土壤肥力的影响[J]. 生态学杂志, 2004, 23(6): 33-36.