[1]丛汉卿,齐尧尧,朱文丽,等.木薯CKX基因的序列分析及其乙烯和茉莉酸甲酯诱导表达特性[J].江苏农业学报,2016,(03):506.[doi:10.3969/j.issn.1000-4440.2016.03.004]
 CONG Han-qing,QI Yao-yao,Zhu Wen-li,et al.Sequence analysis of CKX gene and expression characteristics induced by ethylene and methyl jasmonate in Manihot esculenta Crantz[J].,2016,(03):506.[doi:10.3969/j.issn.1000-4440.2016.03.004]
点击复制

木薯CKX基因的序列分析及其乙烯和茉莉酸甲酯诱导表达特性()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年03期
页码:
506
栏目:
遗传育种·生理生化
出版日期:
2016-06-30

文章信息/Info

Title:
Sequence analysis of CKX gene and expression characteristics induced by ethylene and methyl jasmonate in Manihot esculenta Crantz
作者:
丛汉卿 齐尧尧 朱文丽 陈松笔 李 丽
中国热带农业科学院热带作物品种资源研究所/农业部热带作物种质资源利用重点开放实验室,海南 儋州 571737
Author(s):
CONG Han-qing QI Yao-yao Zhu Wen-li CHEN Song-bi LI Li
Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crops Germplasm Resources Utilization, Ministry of Agriculture, Danzhou 571737, China
关键词:
木薯 CKX基因 乙烯 茉莉酸 表达分析
Keywords:
cassava CKX gene ethylene jasmonate expression analysis
分类号:
S533
DOI:
10.3969/j.issn.1000-4440.2016.03.004
文献标志码:
A
摘要:
木薯是一种重要的能源和淀粉作物,具有较强的抗逆性。为阐明逆境信号调控细胞分裂素代谢关键基因CKX的分子机制,对乙烯利和茉莉酸甲酯处理后的木薯品种华南八号叶片数字基因表达谱中两个表达差异显著的MeCKX基因进行了序列分析,发现两者具有乙烯响应元件,但没有茉莉酸响应元件。以华南八号悬浮培养细胞为材料,利用qRT-PCR检测了木薯MeCKX1和MeCKX2基因在乙烯利和茉莉酸甲酯处理后的表达特性。结果显示:茉莉酸信号可使这两个基因显著上调; 乙烯信号可使MeCKX1表达量缓慢上调,使MeCKX2表达量缓慢下调。说明这两个MeCKX基因可被乙烯和茉莉酸信号调控,并推测一方面其基因启动子区相应的特异响应元件参与了调控,另一方面两种逆境信号物质分别通过影响其他调控途径,间接造成这两个基因的不同表达,以进一步影响细胞分裂素的代谢。
Abstract:
Cassava(Manihot esculenta Crantz)is an important energy and starch crop,with strong stress resistance. In an attempt to illustrate the molecular mechanism of CKX, a key gene for cytokinin metabolism stimulated by stress signals in cassava,two differentially expressed MeCKX gene sequences were screened from Digital Gene Expression Profiling data with cassava SC8 leaves exposed to ethephon and methyl jasmonate.Sequence analysis shows that two MeCKXs have ethylene responsive elements, but no MeJA responsive elements in promoter regions. Expression patterns of MeCKX1 and MeCKX2 identified by quantitative real time PCR technique revealed that the two genes were up-regulated significantly after treated with methyl jasmonate. Ethylene treatment increased the MeCKX1 expression and decreased the MeCKX2 expression slowly. The results suggest that two MeCKX genes could be regulated by ethylene and jasmine acid signals. It can also be inferred that some specific responsive elements in promoter regions might have participated in the expression regulation. Meanwhile, the two stress signals might have played roles in the metabolism of cytokinin by affecting other regulation pathways, resulting in differential expressions of two MeCKXs.

参考文献/References:

[1] LABAN T F,KIZITO E B,BAGUMA Y,et al. Evaluation of Ugandan cassava germplasm for drought tolerance[J]. International Journal of Agriculture and Crop Sciences, 2013, 5(3): 212-226.
[2] SKOOG F,MILLER C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro[J]. Symposia of the Society for Experimental Biology, 1957, 54: 118-130.
[3] RICHMOND A E, LANG A. Effect of kinetin on protein content and survival of detached Xanthium leaves[J]. Science, 1957, 125: 650-651.
[4] SACHS T, THIMANN K V. Release of lateral buds from apical dominance[J]. Nature, 1964, 201: 939-940.
[5] 邓江明,潘瑞炽.细胞分裂素氧化酶[J]. 植物生理学通讯, 1997, 33(5): 370-375.
[6] GALUSZKA P, FRDBORT L, SEBELA M,et al. Cytokinin oxidase or dehydrogenease? Mechanism of cytokinin degradation in cereals[J]. European Journal of Biochemistry, 2001, 268: 450-461.
[7] KOPEC ˇNY D, TARKOWSKI P, MAJIRA A, et al. Probing cytokinin homeostasis in Arabidopsis thaliana by constitutively overexpressing two forms of the maize cytokinin oxidase/dehydrogenase 1 gene[J]. Plant Science, 2006, 171: 114-122.
[8] WERNER T, K?LLMER I, BARTRINA I, et al. New insights into the biology of cytokinin degradation[J]. Plant Biol, 2006, 8: 1-12.
[9] CONCONI A, SMERDON M J, HOWE G A, et al. The octadecanoidsignalling pathway in plants mediates a response to ultraviolet radiation[J]. Nature, 1996, 383(6603):826-829.
[10] TURNER J G, ELLIS C, DEVOTO A. The jasmonate signal pathway[J]. Plant Cell, 2002, 14(suppl.): 153-164.
[11] 姜宗庆,汤庚国,肖文华,等.茉莉酸对高温胁迫下银杏盆栽苗叶片生理特性的影响[J].江苏农业科学,2014,42(6):211-212.
[12] 张鹤华,薛进军,侯延杰,等. 乙烯利和萘乙酸输液滴干对核桃青皮 开裂率及果实品质的影响 [J]. 南方农业学报,2015,46(6):1058-1062.
[13] 郭 瑾,薛永来,杜道林.植物激素调控拟南芥根系发育的研究进展[J].江苏农业科学,2014,42(5):7-10.
[14] BLEECKER B, KENDE H. Ethylene: a gaseous signal molecule in plants[J]. Annual Review of Cell and Developmental Biology, 2000, 16: 1-18.
[15] JOHNSON P R, ECKER J R. The ethylene gas signal transduction pathway: a molecular perspective[J]. Annual Review of Genetics, 1998, 32: 227-254.
[16] DANIJELA D, ROBERT B, SUSAN H. Flowering induction of Guzmania by ethylene[J]. Scientia Horticulturae, 2006, 110(1): 104-108.
[17] CONG H Q, LI Z Y, XU L. Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis[J]. Plant Growth Regulation, 2013, 69:247-257.
[18] ISMAIL A, RIEMANN M, NICK P. The jasmonate pathway mediates salt tolerance in grapevines[J]. Journal of Experimental Botany, 2012, 63: 2127-2139.
[19] PROCHNIK S, MARRI P R, DESANY B, et al. The cassava genome: current progress, future directions[J]. Tropical Plant Biology, 2012, 5: 88-94.
[20] BRUNAK S, ENGELBRECHT J, KNUDSEN S. Prediction of human mRNA donor and acceptor sites from the DNA sequence[J]. Journal of Molecular Biology, 1991, 220: 49-65.
[21] HEBSGAARD S M, KORNING P G, TOLSTRUP N, et al. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information[J]. Nucleic Acids Research, 1996, 24(17): 3439-3452.
[22] HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
[23] SOLOVYEV V V, SHAHMURADOV I A. PromH: promoters identification using orthologous genomic sequences[J]. Nucleic Acids Research, 2003, 31(13): 3540-3545.
[24] LESCOT M, DéHAIS P, MOREAU Y, et al. PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002,30(1): 325-327.
[25] GASTEIGER E, GATTIKER A, HOOGLAND C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 2003, 31(13):3784-3788.
[26] HUNTER S, APWEILER R, ATTWOOD T K, et al. InterPro: the integrative protein signature database[J]. Nucleic Acids Research, 2009, 37(suppl.1): 211-215.
[27] JONES D T. Protein secondary structure prediction based on position-specific scoring matrices[J]. Journal of Molecular Biology, 1999, 292: 195-202.
[28] ARNOLD K, BORDOLI L, KOPP J,et al. The SWISS-model workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22(2): 195-201.
[29] KHAN I K, WEI Q, CHITALE M, et al. PFP/ESG: automated protein function prediction servers enhanced with gene ontology visualization tool[J]. Bioinformatics, 2015, 31(2): 271-272.
[30] WERNER T, MOTYKA V, LAUCOU V, et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003, 15(11): 2532-2550.
[31] GU R, FU J, GUO S, et al. Comparative expression and phylogenetic analysis of maize cytokinin dehydrogenase/oxidase(CKX)gene family[J]. Journal of Plant Growth Regulation, 2010, 29: 428-440.
[32] ASHIKARI M, SAKAKIBARA H, LIN S, et al. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745.
[33] THOMAS S. Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species[J]. Journal of Plant Research, 2003, 116(3): 241-252.
[34] SANO H, SEO S, KOIZUMI N, et al. Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants[J]. Plant Cell Physiology, 1996, 37: 762-769
[35] NIKI T, MITSUBARA I, SEO S, et al. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related(PR)protein gene in wounded mature tobacco leaves [J]. Plant Cell Physiology, 1998, 39: 500-507.
[36] CHAE H S, FAURE F, KIEBER J J. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell, 2003, 15(2): 545-559.
[37] MIZUNO T. Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms[J]. Bioscience Biotechnology and Biochemistry, 2005, 69: 2263-2276.
[38] BRUGIERE N, JIAO S, HANTKE S, et al. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress[J]. Plant Physiology, 2003, 132(3): 1228-1240.
[39] TANAKA Y, SANO T, TAMAOKI M, et al. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis[J]. Journal of Experimental Botany, 2006, 57: 2259-2266.
[40] 陈梦莹,陈祥福,崔 萌,等. ipt基因在植物基因工程中的应用[J]. 长江蔬菜, 2014(16): 9-13.
[41] MOK D W, MOK M C. Cytokinin metabolism and action[J]. Annual Review of Plant Biology, 2001, 52: 89-118.

相似文献/References:

[1]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
 AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]

备注/Memo

备注/Memo:
收稿日期:2015-10-11
基金项目:中央级公益性科研院所基本科研业务费专项(1630032014036)
作者简介::丛汉卿(1983-),男,山东潍坊人,博士,助理研究员,主要从事分子生物学和生物信息学研究。(Tel)13698948460;(E-mail)hiigara@yeah.net
通讯作者:李 丽,(E-mail)chenli907@163.com
更新日期/Last Update: 2016-06-30