参考文献/References:
[1]MUNAKATA N, CORNAIN S, KANOKO M, et al. Biological monitoring of solar UV radiation at 17 sites in Asia, Europe and South America from 1999 to 2004 [J]. Photochemistry and Photobiology, 2006,82: 689-694.
[2]邓祥元,成婕,周伟华,等. UV-B辐射对聚球藻7942生长及生理特性的影响[J]. 江苏农业科学,2014,42(5): 281-283.
[3]李元,杨济龙,王勋陵,等. 紫外辐射增加对春小麦根际土壤微生物种群数量的影响[J]. 中国环境科学,1999,19(2):157- 160.
[4]张文会,刘立科,苗秀莲,等. CO2倍增及UV-B增强对大豆植株生长和根际微生物的影响[J]. 西北植物学报,2009,29(4):724-732.
[5]吕志伟,万国峰,张朋,等. CO2倍增和UV-B 辐射增强对大豆根际氨氧化细菌数量及土壤酶活的影响[J]. 大豆科学,2012,31 (1):69-72.
[6]周新明,张振文,惠竹梅,等. UV-B辐射增强对葡萄光合作用日变化的影响[J]. 农业工程学报,2009,25(3):209-212.
[7]许光辉,郑洪元. 土壤微生物学分析手册[M]. 北京:农业出版社,1986:120-121,249-291.
[8]肖玲,王开运,张远彬. CO2 浓度和温度升高对红桦根际微生物的影响[J]. 生态学报,2006,26(6):1701-1708.
[9]张文会,张朋,刘立科,等. 紫外线B辐射增强对大豆生长及光合作用相关指标的影响[J]. 大豆科学,2009,128(12):229-232.
[10]AVERY L M, LEWIS SMITH R I, WEST H M. Response of rhizosphere microbial communities associated with Antarctic hairgrass (Deschampsia antarctica) to UV radiation [J]. Polar Biol, 2003, 26(8): 525-529.
[11]JOHNSON D, CAMPBELL C D, LEE J A, et al. Arctic microorganisms respond more to elevated UV-B radiation than CO2 [J]. Nature, 2002, 416: 82-83.
[12]STARK J M, HART S C. Nitrogen storage (communication arising): UV-B radiation and soil microbial communities [J]. Nature, 2003, 423: 137-138.
[13]ROBSON T M, PANCOTTO V A, BALLAR C L, et al. Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community [J]. Oecologia, 2004, 140: 480-490.
[14]PANCOTTO V A, SALA O E, ROBSON T M, et al. Direct and indirect effects of solar ultraviolet-B radiation on long-term decomposition [J]. Global Change Biol, 2005, 11: 1982-1989.
[15]蒋静艳,胡正华,牛传坡. UV-B辐射增强对小麦秸秆化学成分及其施用后土壤N2O排放的影响[J]. 应用生态学报,2010,21(10):2715-2720.
[16]訾先能,陈宗瑜,郭世昌,等. UV-B辐射的增强对作物形态及生理功能的影响[J]. 中国农业气象,2006,27(2):102-106.
[17]祖艳群,魏兰芳,杨济龙,等. 紫外辐射增加对40个割手密无性系土壤微生物种群数量动态和多样性的影响[J]. 农业环境科学学报, 2005,24(1):6-11.
[18]KLIRONOMOS J N, ALLEN M F. UV-B-Mediated changes on below-ground communities as sociated with the roots of Acer saccharum [J]. Functional Ecol, 1995, 9: 923-930.
[19]刘芷宇. 根际微域环境的研究[J]. 土壤, 1993,25(5):225-230.
相似文献/References:
[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(01):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(01):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[3]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(01):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[4]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(01):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[5]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(01):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[6]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(01):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[7]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(01):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[8]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[9]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(01):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
[10]张威,许文静,许亚男,等.基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J].江苏农业学报,2023,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
ZHANG Wei,XU Wen-jing,XU Ya-nan,et al.Creation of high oleic acid soybean lines by CRISPR/Cas9[J].,2023,(01):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]